Studying the impact of foliar fertilization with calcium and silicon close to harvest on pineapple physico-chemical characteristics
Diego M. Cano-Reinoso, Loekas Soesanto, Kharisun, Condro Wibowo
Abstract: Calcium is an essential mineral for pineapple development and quality. On the other hand, silicon is another mineral that has been investigated due to its positive effects on fruit quality. Nonetheless, no sufficient information has been document in pineapple, primordially with applications close to harvest, when pineapple plant tends to exposed mineral deficiencies. Therefore, this study aimed to evaluate the effect of foliar fertilization with calcium and silicon close to harvest on pineapple physico-chemical characteristics. The treatments arranged were, A (control: Without fertilization), B (Ca from ten weeks before harvest until harvest), C (Ca from six weeks before harvest until harvest), D (Si from ten weeks before harvest until harvest), E (Si from six weeks before harvest until harvest), F (Ca + Si from ten weeks before harvest until harvest), and G (Ca + Si from six weeks before harvest until harvest). MD2 pineapple hybrid was used in this experiment. Fruit total soluble solids, total acidity, sugar, acid, water content, β-carotene, fruit and crown weight, and flesh firmness were determined in two experimental trials. Treatment D delivered the best performance by obtaining an ideal level of total soluble solids, water, sugar and acid content, fruit and crown weight, and flesh firmness. Besides, this treatment provided the highest citric acid (≥ 0.6%) and
β-carotene content (≥ 3.5 mg/kg), representative antioxidants in pineapple. In conclusion, the employment of silicon close to harvest, from ten weeks before harvest until harvest can be used as an ideal treatment to provide an optimal pineapple quality.
Keywords: Antioxidant; MD2; rainfall; stress; waterlogging
Citation: Cano-Reinoso, D. M., Soesanto, L., Kharisun & Wibowo, C. (2024). Studying the impact of foliar fertilization
with calcium and silicon close to harvest on pineapple physico-chemical characteristics. Bulg. J. Agric. Sci., 30(5),
757–768
References: (click to open/close) | Artyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality - A literature review in Europe. Plants, 7(3), 54-71. https://doi.org/10.3390/plants7030054 Barral, B., Chillet, M., Minier, J., Léchaudel, M. & Schorr-Galindo, S. (2017). Evaluating the response to Fusarium Ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biology, 121(12), 1045-1053. https://doi.org/10.1016/j.funbio.2017.09.002 Bartholomew, D. P. & Sanewski, G. M. (2018). Inflorescence and fruit development and yield. In: The pineapple: botany, production and uses. CABI Publishing, London, UK, 223-268. Benítez, S., Soro, L., Achaerandio, I. & Sepulcre, F. (2014). Combined effect of a low permeable film and edible coatings or calcium dips on the quality of fresh-cut pineapple. Journal of Food Process Engineering, 37(2), 91-99. https://doi.org/10.1111/jfpe.12063 Bin Thalip, A. A., Tong, P. S. & Casey, Ng. (2015). The MD2 “Super Sweet” pineapple (Ananas comosus). Utar Agriculture Science Journal, 1(4), 14-17. Cano-Reinoso, D. M., Soesanto, L., Kharisun & Wibowo, C. (2021a). Review: Fruit collapse and heart rot disease in pineapple: Pathogen characterization, ultrastructure infections of plant and cell mechanism resistance. Biodiversitas, 22(5), 2477-2488. https://doi.org/10.13057/biodiv/d220504 Cano-Reinoso, D. M., Soesanto, L., Kharisun & Wibowo, C. (2021b). Effect of pre-harvest fruit covers and calcium fertilization on pineapple thermotolerance and flesh translucency. Emirates Journal of Food and Agriculture, 33(10), 834-845. https://doi.org/10.9755/ejfa.2021.v33.i10.2766 Cano-Reinoso, D. M., Soesanto, L., Kharisun & Wibowo, C. (2022a). Effect of pre-and postharvest treatments with salicylic acid on Physicochemical Properties of Pineapple cv. MD2. Chiang Mai University Journal of Natural Sciences, 21(23), 39-59. Cano-Reinoso, D. M., Kharisun, Wibowo, C. & Soesanto, L. (2022b). Effect of calcium and silicon fertilization after flowering on pineapple mineral status and flesh translucency. Plant Physiology Reports, 27, 96-108. https://doi.org/10.1007/s40502-022-00651-2 Cano-Reinoso, D. M., Soesanto, L., Kharisun & Wibowo, C. (2022c). Fruit collapse incidence and quality of pineapple as affected by biopesticides based on Pseudomonas fluorescens and Trichoderma harzianum. Acta Agriculturae Slovenica, 118(3), 1-13. https://doi.org/10.14720/aas.2022.118.3.2485 Carr, M. K. V. (2012). The water relations and irrigation requirements of pineapple (Ananas comosus var. comosus): A review. Experimental Agriculture, 48(4), 488-501. https://doi.org/10.1017/S0014479712000385 Chen, N. J. & Paull, R. E. (2017). Production and postharvest handling of low acid hybrid pineapple. Acta Horticulturae, 1166, 25-34. https://doi.org/10.17660/ActaHortic.2017.1166.4 De Freitas, S. T. & Resender Nassur, R. C. M. (2017). Calcium treatments. In: Novel postharvest treatments of fresh produce. CRC Press, Boca Raton, USA, 52-68. Ding, P. & Syazwani, S. (2016). Physicochemical quality, antioxidant compounds and activity of MD-2 pineapple fruit at five ripening stages. International Food Research Journal, 23(2), 549-555. Fanciullino, A. L., Bidel, L. P. R. & Urban, L. (2014). Carotenoid responses to environmental stimuli: Integrating redox and carbon controls into a fruit model. Plant, Cell and Environment, 37(2), 273-289. https://doi.org/10.1111/pce.12153 Frew, A., Weston, L. A., Reynolds, O. L. & Gurr, G. M. (2018). The role of silicon in plant biology: A paradigm shift in research approach. Annals of Botany, 121(7), 1265-1273. https://doi.org/10.1093/aob/mcy009 Gao, X., Cox, K. L. & He, P. (2014). Functions of calcium-dependent protein kinases in plant innate immunity. Plants, 3(1), 160-176. https://doi.org/10.3390/plants3010160 Hanumanthaiah, M. R., Vijendrakumar, R. C., Renuka, D. M., Kumar, K. K. & Santhosha, K. V. (2015). Effect of soil and foliar application of silicon on fruit quality parameters of Banana cv . neypoovan under hill zone. Plant Archives, 15(1), 221-224. Hocking, B., Tyerman, S. D., Burton, R. A. & Gilliham, M. (2016). Fruit calcium: Transport and physiology. Frontiers in Plant Science, 7, 1-17. https://doi.org/10.3389/fpls.2016.00569 Irfan, M., Hayat, S., Hayat, Q., Afroz, S. & Ahmad, A. (2010). Physiological and biochemical changes in plants under waterlogging. Protoplasma, 241(1), 3-17. https://doi.org/10.1007/s00709-009-0098-8 Islam, M. Z., Mele, M. A., Choi, K. & Kang, H. (2018). The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes. Zemdirbyste-Agriculture, 105(2), 159-164. https://doi.org/10.13080/z-a.2018.105.020 Kleemann, L. (2016). Organic Pineapple Farming in Ghana - A Good Choice for Smallholders. The Journal of Developing Areas, 50(3), 109-130. https://doi.org/10.1353/jda.2016.0096 Laane, H. M. (2018). The effects of foliar sprays with different silicon compounds. Plants, 7(2), 45-67. https://doi.org/10.3390/plants7020045 Li, Y. H., Wu, Y. J., Wu, B., Zou, M. H., Zhang, Z. & Sun, G. M. (2011). Exogenous gibberellic acid increases the fruit weight of “Comte de Paris” pineapple by enlarging flesh cells without negative effects on fruit quality. Acta Physiologiae Plantarum, 33(5), 1715-1722. https://doi.org/10.1007/s11738-010-0708-2 Liang, Y., Nikolic, M., Bélanger, R., Gong, H. & Song, H. (2015). Silicon in agriculture, from theory to practice. 1th edn. New York: NY: Springer. https://doi.org/10.1007/978-94-017-9978-2 Loh, S. C., Azrina, A., Chan, S. H. & Khoo, H. E. (2020). Extracts of peel and different parts of MD2 pineapple as potent nutraceuticals. Thai Journal of Pharmaceutical Sciences (TJPS), 41, 49-52. Londers, E., Ceusters, J., Godts, C., De Proft, M. P. & Van De Poel, B. (2011). Pre-and postharvest metabolism of crown leaves of pineapple fruit. Acta Horticulturae, 902, 233-238. https://doi.org/10.17660/ActaHortic.2011.902.23 Lu, X., Sun, D., Wu, Q., Liu, S., Zhang, X. & Sun, G. (2011). Effects of bagging with different paper bags on fruit growth and quality of pineapple. Journal of Fruit Science, 28(6), 1086-1089. Lu, X. H., Sun, D. Q., Wu, Q. S., Liu, S. H. & Sun G. M. (2014). Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China. Molecules, 19(6), 8518-8532. https://doi.org/10.3390/molecules19068518 Madani, B., Mirshekari, A., Sofo, A. & Tengku Muda Mohamed, M. (2016). Preharvest calcium applications improve postharvest quality of papaya fruits (Carica papaya L. cv. Eksotika II). Journal of Plant Nutrition, 39(10), 1483-1492. https://doi.org/10.1080/01904167.2016.1143500 Majeed, S., Reetika, Z., Javaid, M., Muslima, A. B. & Rupesh, N. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(73), 1-16. https://doi.org/10.1007/s13205-019-1613-z Muhammad Arslan Ashraf (2012). Waterlogging stress in plants: A review. African Journal of Agricultural Research, 7(13), 1976-1981. https://doi.org/10.5897/ajarx11.084 Nadzirah, K. Z., Zainal, S., Noriham, A., Siti Roha, A. M. & Nadya, H. (2013). Physico- chemical properties of pineapple variety N36 harvested and stored at different maturity stages. International Food Research Journal, 20(1), 225-231. Noichinda, S., Bodhipadma, K. & Wongs-Aree, C. (2017). Antioxidant Potential and Their changes during postharvest handling of tropical fruits. In: Novel Postharvest Treatments of Fresh Produce. CRC Press, Boca Raton, USA, 633-662. Owolade, S. O., Akinrinola, A. O., Popoola, F. O., Aderibigbe, O. R., Ademoyegun, O. T. & Olabode I. A. (2017). Study on physico-chemical properties, antioxidant activity and shelf stability of carrot (Daucus carota) and pineapple (Ananas comosus) juice blend. International Food Research Journal, 24(2), 534-540. Paull, R. E. & Chen, C. C. (2003). Postharvest Physiology, Handling and Storage of Pineapple. In: The pineapple: botany, production and uses. CABI Publishing, London, UK, 253-279. Paull, R. E. & Chen, N. J . (2015). Pineapple translucency and chilling injury in new low-acid hybrids. Acta Horticulturae, 1088, 61-66. https://doi.org/10.17660/ActaHortic.2015.1088.5 Paull, R. E. & Chen, C. C. (2018). Postharvest Physiology, Handling and Storage of Pineapple. In: The Pineapple: Botany, Production and Uses. CABI Publishing, London, UK, 295-323. Pires de Matos, A. (2019). Main pests affecting pineapple plantations and their impact on crop development. Acta Horticulturae, 1239, 137-145. https://doi.org/10.17660/ActaHortic.2019.1239.17 Sadak, M. S. & Orabi S. A. (2015). Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research, 8(1), 333-345. Saradhuldhat, P. & Paull, R. E. (2007). Pineapple organic acid metabolism and accumulation during fruit development. Scientia Horticulturae, 112(3), 297-303. https://doi.org/10.1016/j.scienta.2006.12.031 Shamsudin, R., Zulkifli, N. A. & Kamarul Zaman, A. A. (2020). Quality attributes of fresh pineapple-mango juice blend during storage. International Food Research Journal, 27(1), 141-149. Sipes, B. & Pires de Matos, A. (2018). Pests, diseases and weeds. In: The pineapple: botany, production and uses. CABI Publishing, London, UK, 269-294. Siti Roha, A. M., Zainal, S., Noriham, A. & Nadzirah, K. Z. (2013). Determination of sugar content in pineapple waste variety N36. International Food Research Journal, 20(4), 1941-1943. Soteriou, G. A., Kyriacou, M. C., Siomos, A. S. & Gerasopoulos, D. (2014). Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 165, 282-289. https://doi.org/10.1016/j.foodchem.2014.04.120 Steingass, C. B., Vollmer, K., Lux, P. E., Dell, C., Carle, R. & Schweiggert, R. M. (2020). ‘HPLC-DAD-APCI-MSn analysis of the genuine carotenoid pattern of pineapple (Ananas comosus [L.] Merr.) infructescence. Food Research International, 127, 108709. https://doi.org/10.1016/j.foodres.2019.108709 Sun, X., Han, G., Meng, Z., Lin, L., Sui, N. & Lin, L. (2019). Roles of malic enzymes in plant development and stress responses. Plant Signaling & Behavior, 14(10), 1-8. https://doi.org/ 10.1080/15592324.2019.1644596 Tucker, G., Yin, X., Zhang, A., Wang, M., Zhu, Q., Liu, X., Xie, X., Chen, K. & Grierson, D. (2017). Ethylene and fruit softening. Food Quality and Safety, 1(4), 253-267. https://doi.org/10.1093/fqsafe/fyx024 Uthairatanakij, A. & Jitareerat, P. (2015). Preharvest Calcium effects on internal breakdown and quality of ‘Pattavia’ pineapple during low temperature storage. Acta Horticulturae, 1088, 443-448. https://doi.org/10.17660/ActaHortic.2015.1088.78 Vásquez-Jiménez, J. H. & Bartholomew, D. P. (2018). Plant nutrition. In: The Pineapple: Botany, Production and Uses. CABI Publishing, London, UK, 175-202. Weerahewa, H. L. D. & Wicramasekara, I. (2020). Preharvest application of silicon reduces internal browning development of pineapple (Ananas comosus ’Mauritius’) during cold storage: A novel approach. Acta Horticulturae, 1278, 39-44. https://doi.org/10.17660/ActaHortic.2020.1278.6 Yang, C., Chen, T., Shen, B., Sun, S., Song, H., Chen, D. & Xi, W. (2019). Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica L.) fruit. Food Science and Nutrition, 7(11), 3635-3643. https://doi.org/10.1002/fsn3.1219 Žemlička, L., Fodran, P., Kolek, E. & Prónayová, N. (2013). Analysis of natural aroma and flavor of MD2 pineapple variety (Ananas comosus [L.] Merr.). Acta Chimica Slovaca, 6(1), 123-128. https://doi.org/10.2478/acs-2013-0019
|
|
| Date published: 2024-10-24
Download full text