Ahakpaz. F., Abdi. H., Neyestani, E., Hesami. A., Mohammadi, B., Mahmoudi, K. N., AbediAsl, G., Noshabadi, M. J., Ahakpaz, F. & Alipour, H. (2021). Genotypebyenvironment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245, 106665. Ahmadi, J., Vaezi. B. & Hossein Fotokian, M. (2012). Graphical analysis of multienvironment trials for barley yield using AMMI and GGEbiplot under rainfed conditions. Journal of Plant Physiology and Breeding, 2(1), 4354. Alizadeh, B., Rezaizad, A., Hamedani, M. Y., Shiresmaeili, G., Nasserghadimi, F., Khademhamzeh, H. Z. & Gholizadeh, A. (2022). Genotype × Environment interactions and simultaneous selection for high seed yield and stability in winter rapeseed (Brassica napus) multienvironment trials. Agricultural Research, 11(2), 185–196. Eberhart, S. A. T. & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36–40. Finlay, K. W. & Wilkinson, G. N. (1963). Adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14, 742–754. Gauch, H. G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53, 1860–1869. Gauch, H. G. & Zobel, R. W. (1988). Predictive and postdictive success of statistical analyses of yield trials. Theoretical and Applied Genetics, 76, 1–10. Huang, X., Jang, S., Kim, B., Piao, Z., Redona, E. & Koh, H. J. (2021). Evaluating genotype × environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical and tropical environments. Agriculture, 11(6), 558. Huehn, M. (1990). Nonparametric measures of phenotypic stability: Part 1. Theory. Euphytica, 47, 189–194. Kang, M. S. (1988). A ranksum method for selecting high yielding stable corn genotypes. Cereal Research Communications, 16, 113–115. Koundinya, A. V. V., Ajeesh, B. R., Hegde, V., Sheela, M. N., Mohan, C. & Asha, K. I. (2021). Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. Scientia Horticulturae, 281, 109949. Mansour, E., Moustafa, E. S., ElNaggar, N. Z., Abdelsalam. A., & Igartua, E. (2018). Grain yield stability of highyielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop and Pasture Science, 69(7), 681690. Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., SharifalHosseini. M., Taheri. M., & Mahlooji, M. (2014). GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultural Science and Technology, 16(3), 609622. Nassar, R. & Huehn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics, 43, 45–53. Nataraj, V., Bhartiya, A., Singh, C. P., Devi, H. N., Deshmukh, M. P., Verghese, P., Singh, K., Mehtre, S. P., Kumari, V., Maranna, S., Kumawat, G., Ratnaparkhe, M. B., Satpute, G. K., Rajesh, V., Chandra, S., Ramteke, R., Khandekar, N. & Gupta, S. (2021). WAASB based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agronomy Journal, 113, 3089–3099. Olivoto, T. & Lucio, A. D. (2020). Metan: An R package for multienvironment trial analysis. Methods in Ecology and Evolution, 11, 783–789. Olivoto, T., Lúcio, A. D. C., Silva, J. A. G., Marchioro, V. S., Souza, V. Q. & Jost, E. (2019). Mean performance and stability in multienvironment trials I: Combining Features of AMMI and BLUP techniques. Agronomy Journal, 111, 2949–2960. Piepho, H. P. (1994). Best Linear Unbiased Prediction (BLUP) for regional yield trials: A comparison to additive main effects and multiplicative interaction (AMMI) analysis. Theoretical and Applied Genetics, 89, 647–654. PourAboughadareh, A., Yousefan, M., Moradkhani, H., Poczai, P. & Siddique, K. H. (2019). STABILITYSOFT: a new online program to calculate parametric and nonparametric stability statistics for crop traits. Applications in Plant Sciences, 7, e01211. PourAboughadareh, A., Barati, A., Koohkan, S. A., Jabari, M., Marzoghian, A., Gholipoor, A., ShahbaziHomonloo, K., Zali, H., Poodineh, O. & Kheirgo, M. (2022). Dissection of genotypebyenvironment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre, 46, 1–12. Purchase, J. L., Hatting, H. & Van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17, 101–107. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/. Resende, M. D. V. & Duarte, J. B. (2007). Precision and quality control in crop evaluation experiments. Pesqui. Agropecuária Trop., 37, 182–194 (Pt). Shukla, G. K. (1972). Some statistical aspects of partitioning genotypeenvironmental components of variability. Heredity, 28, 237–245. Sneller, C. H., KilgoreNorquest, L. & Dombek, D. (1997). Repeatability of yield stability statistics in soybean. Crop Science, 37, 383–390. Thennarasu, K. (1995). On certain nonparametric procedures for studying genotypeenvironment interactions and yield stability. Ph.D. thesis, PJ School, Indian Agricultural Research Institute, New Delhi, India. Vaezi, B., PourAboughadareh, A., Mohammadi, R., Mehraban, A., HosseinPour, T., Koohkan, E., Ghasemi, S., Moradkhani, H. & Siddique, K. H. (2019). Integrating different stability models to investigate genotype× environment interactions and identify stable and highyielding barley genotypes. Euphytica, 215, 118. van Eeuwijk, F. A., BustosKorts, D. V. & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Science, 56, 2119–2140. Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y. & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24. Wricke, G. (1962). A common method for determining the ecological dispersion in field experiments. Zeitschrift Für Pflanzenzücht, 47, 92–96 (De). Yan, W. & Tinker, N. A. (2006) Biplot Analysis of MultiEnvironment Trial Data: Principles and Applications. Canadian Journal of Plant Science, 86, 623645. Zali, H., Farshadfar, E., Sabaghpour, S. H. & Karimizadeh, R. (2012). Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research, 3, 3126–3136.

