Morphological, agronomic characteristics, and flavonoid content of Echinacea purpurea at various gamma ray doses
Wafa’ Nur Hanifah, Ahmad Yunus
, Nandariyah, Yuli Widiyastuti
Abstract: Purple coneflower is an introduced herbal plant that has anti-inflammatory and antibiotic benefits. The pharmaceutical industry is currently starting to develop the use of herbal plants as medicinal raw materials, including this plants. Indonesia has started cultivating purple coneflower but it is only cultivated in the highlands which have low temperatures. The one method of plant breeders to expand plant adaptation in high temperature environments without reducing the content of secondary metabolites is by using gamma ray irradiation. This study aims to determine the effect of gamma ray irradiation on the diversity of growth, yield and flavonoid content of purple coneflower. Purple coneflower was irradiated with doses of 0 Gy (control), 5 Gy, 15 Gy, and 25 Gy. The research design used simple design experiment in plots without repetition. The results show that the diversity in plant height, number of leaves and flowers, and biomass weight of the mutant plants is higher than the control. The mutant plants in dosage 15 Gy are the highest in diversity. The flavonoid content of mutant plants is lower than the control, except in dosage 25 Gy.
Keywords: diversity; medicinal plant; mutation; purple coneflower; secondary metabolites
Citation: Hanifah, W. H., Yunus, A., Nandariyah & Yuli Widiyastuti, Y. (2024). Morphological, agronomic characteristics, and flavonoid content of Echinacea purpurea at various gamma ray doses. Bulg. J. Agric. Sci., 30(3), 451–457
References: (click to open/close) | Abdullah, S., Kamaruddin, N. Y. & Harun, A. R. (2018). The effect of gamma radiation on plant morphological characteristics of Zingiber officinale Roscoe. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2085–2091. https://doi.org/10.18517/IJASEIT.8.5.4641. Ahmed, A. Q., Salman, A. Y., Hassan, A. B., Abojassim, A. A., Mraity, H. A. A. & Jasim, M. A. (2020). The impact of Gamma Ray on DNA molecule. International Journal of Radiology and Radiation Oncology, 6(1), 011–013. https://doi.org/10.17352/IJRRO.000038. Ahumada-Flores, S., Gómez Pando, L. R., Parra Cota, F. I., de la Cruz Torres, E., Sarsu, F. & de los Santos Villalobos, S. (2021). Technical note: Gamma irradiation induces changes of phenotypic and agronomic traits in wheat (Triticum turgidum ssp. durum). Applied Radiation and Isotopes, 167, 109490. https://doi.org/10.1016/J.APRADISO.2020.109490. Bermawie, N., Meilawati, N. L. W., Purwiyanti, S. & Melati (2015). Effect of Gamma Ray Radiation (60co) on Growth and Production of Small White Ginger (Zingiber officinale var. amarum). Jurnal Penelitian Tanaman Industri, 21(2), 56. https://doi.org/10.21082/littri.v21n2.2015.47-56 (Id). Beyaz, R. & Yildiz, M. (2017). The Use of Gamma Irradiation in Plant Mutation Breeding. Plant Engineering. https://doi.org/10.5772/INTECHOPEN.69974. Capovilla, G., Schmid, M. & Posé, D. (2015). Control of flowering by ambient temperature. Journal of Experimental Botany, 66(1), 59–69. https://doi.org/10.1093/JXB/ERU416. Choirunnisa, J. P., Widiyastuti, Y., Sakya, A. T. & Yunus, A. (2021). Morphological characteristics and flavonoid accumulation of Echinacea purpurea cultivated at various salinity. Biodiversitas, 22(9), 3716–3721. https://doi.org/10.13057/BIODIV/D220915. Das, K. & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(53), 1–13. https://doi.org/10.3389/FENVS.2014.00053/BIBTEX. Fedenko, V., Shemet, S. & Eliseeva, T. (2020). Reflectance Spectra of Flowers of Purple Coneflower with different colors. Proceedings of Eighth International Scientific and Practical, 227–229. https://doi.org/http://doi.org/10.5281/zenodo.4054586. García-Pérez, M. E., Kasangana, P. B. & Stevanovic, T. (2017). Bioactive Polyphenols for Diabetes and Inflammation in Psoriasis Disease. Studies in Natural Products Chemistry, 52, 231–268. https://doi.org/10.1016/B978-0-444-63931-8.00006-0. Hong, M. J., Kim, D. Y., Jo, Y. D., Choi, H. il, Ahn, J. W., Kwon, S. J., Kim, S. H., Seo, Y. W. & Kim, J. B. (2022). Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. Applied Sciences, 12(6), 3208. https://doi.org/10.3390/APP12063208. Jan, S., Parween, T., Siddiqi, T. O. & Mahmooduzzafar, X. (2012). Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20(1), 17–39. https://doi.org/10.1139/a11-021 Khah, M. A. & Verma, R. C. (2015). Assessment of the effects of gamma radiations on various morphological and agronomic traits of common wheat (Triticum aestivum L.) var. WH-147. European Journal of Experimental Biology, 5(7), 6-11. Kindscher, K. (2016). Echinacea: Herbal Medicine with a Wild History. Springer International Publishing. Kumar, K. M. & Ramaiah, S. (2011). Pharmacological Importance of Echinacea purpurea. International Journal of Pharma and Bio Sciences, 2(4), 304–314. https://ijpbs.net/details.php?article=1080. Kumari, K., Dhatt, K. K. & Kapoor, M. (2013). Induced Mutagenesis in Chrysanthemum Morifolium Variety ‘Otome Pink’ Through Gamma Irradiation. The Bioscan: An International Quarterly Journal of Life Sciences, 8(4), 1481492. Moghaddam, S. S., Jaafar, H., Ibrahim, R., Rahmat, A., Aziz, M. A. & Philip, E. (2011). Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules, 16(6), 4994–5007. https://doi.org/10.3390/molecules16064994. Muhallilin, I., Aisyah, S. I. & Sukma, D. (2019). The diversity of morphological characteristics and chemical content of celosia Cristata plantlets due to gamma ray irradiation. Biodiversitas, 20(3), 862–866. https://doi.org/10.13057/biodiv/d200333. Mukherjee, P. K. (2019). Phyto-Pharmaceuticals, Nutraceuticals and Their Evaluation. In Quality Control and Evaluation of Herbal Drugs, 707–722. Elsevier. https://doi.org/10.1016/B978-0-12-813374-3.00020-X. Pelcaru, C. F., Ene, M., Petrache, A. M. & Neguţ, D. C. (2021). Low Doses of Gamma Irradiation Stimulate Synthesis of Bioactive Compounds with Antioxidant Activity in Fomes fomentarius Living Mycelium. Applied Sciences, 11(9), 4236. https://doi.org/10.3390/APP11094236. Preuss, S. B. & Britt, A. B. (2003). A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164(1), 323–334. https://doi.org/10.1093/GENETICS/164.1.323. Rahardjo, M. (2005). Echinacea purpurea Plant Cultivation Opportunities in Indonesia. Perspektif, 4(1), 1–10. https://doi.org/10.21082/p.v4n1.2005.%p. Rahardjo, M., Sudiarto, SMD, R. & Sukarman (2001). Growth Pattern and Nutrient Uptake of Echinacea purpurea. LITTRI, 7(3), 74–83 (Id). Rizqiani, Y., Kusmiyati, F. & Anwar, S. (2018). Color diversity of M1 flower of aster plant (Callistephus chinensis) result of mutation induction of gamma ray irradiation. Journal of Agro Complex, 2(1), 52–58. https://doi.org/10.14710/JOAC.2.1.52-58 (Id). Sidhiq, D. F. (2020). Growth, Development, and Total Phenol Content Accession Echinacea purpurea (L.) Moench. at Some Altitude Places in Karanganyar, Central Java, Indonesia. Sebelas Maret University (Id). Sidhiq, D. F., Widiyastuti, Y., Subositi, D., Pujiasmanto, B. & Yunus, A. (2020). Morphological diversity, total phenolic and flavonoid content of Echinacea purpurea cultivated in Karangpandan, Central Java, Indonesia. Biodiversitas, 21(3), 1265–1271. https://doi.org/10.13057/biodiv/d210355. Silva, A. S. da, Danielowski, R., Braga, E. J. B., Deuner, S., Magalhães Junior, A. M. de & Peters, J. A. (2011). Development of rice seedlings grown from pre-hydrated seeds and irradiated with gamma rays. Ciência e Agrotecnologia, 35(6), 1093–1100. https://doi.org/10.1590/S1413-70542011000600008. Subositi, D. & Fauzi (2016). Intraspecific Diversity of Accession Echinacea purpurea (L.) Moench Phase I Mass Selection Results Based on ISSR Analysis. In: Indonesian Journal of Plant Medicine, 9(1). Center for Research and Development of Medicinal Plants and Traditional Medicine (Id). Susila, E., Susilowati, A. & Yunus, A. (2019). The morphological diversity of Chrysanthemum resulted from gamma ray irradiation. Biodiversitas, 20(2), 463–467. https://doi.org/10.13057/biodiv/d200223. Zayova, E., Stancheva, I., Geneva, M., Petrova, M. & Vasilevska-Ivanova, R. (2012). Morphological evaluation and antioxidant activity of in vitro- and in vivo-derived Echinacea purpurea plants. Central European Journal of Biology, 7(4), 698–707. https://doi.org/10.2478/s11535-012-0054-z.
|
|
| Date published: 2024-06-25
Download full text