Effect of silicon foliar fertilization on limiting the growth of stem and root necrosis in pepper (Capsicum annum L.)
Nataliya Karadzhova
Abstract: Botrytis cinerea and Sclerotinia sclerotiorum are important fungal pathogens of a wide range of hosts. Infection prevention and control can be extremely difficult. There are no effective fungicides to control these soil-borne pathogens, causing gray and white mold on pepper. The results of a study of the influence of liquid fertilizer “Optysil” (Intermag, Poland) are presented: containing silicon: (SiO2 – 200 g/L) and iron (Fe 16.5 g/L) on the pepper resistance to attack by Botrytis cinerea and Sclerotinia sclerotiorum. The experiment was carried out in 2022, in field conditions at the Maritsa VCRI with the Stryama variety, planted according to a scheme (60/25 cm) on the area naturally infected with Pyrenochaeta lycopersici.
The fertilizer “Optysil” was applied by spraying as an aqueous solution at a concentration of 0.05 ml per L of water three times: one week after transplanting, twice during mass flowering stage with an interval of 14 days. Plants were artificially infected with pure cultures of the pathogens Botrytis cinerea and Sclerotinia sclerotiorum by the method of decapitation of the main stem, applying a 7-day pure culture of each isolate and wrapping the wounded area with aluminum foil. An increase in the necrotic areas was observed in the variants treated with “Optysil” and the control variants without treating the plants with this preparation. Infection of the young plants was carried out in the beginning of flowering stage.
The degree of infection of the roots with corky root rot is recorded after removing the plants from the soil according to a generally accepted 5-point scale for reporting. Temperature during the trial period: daytime 27-32oC; night – 13–17oC. The length of necrotic lesions in decapitated plants was measured in mm up to and including the 10th day after transplanting. A tendency to strengthen the immune response of pepper plants treated with "Optysil" to infection with the studied fungal pathogens was established. The effect of “Optysil” application against the growth of necrosis from gray mold is 43%, against white mold - 41%, corky root rot – above 50%. The results show that the silicon acts as an immunostimulant, blocking the rapid growth of stem necrosis caused by wound infection with Botrytis cinerea and Sclerotinia sclerotiorum and inhibiting the process of infection of pepper roots with the pathogen Pyrenochaeta lycopersici.
Keywords: Botrytis cinerea; Capsicum annuum L.; fungus; immune response; infection; Sclerotinia sclerotiorum
Citation: Karadzhova, N. (2024). Effect of silicon foliar fertilization on limiting the growth of stem and root necrosis in pepper (Capsicum annum L.). Bulg. J. Agric. Sci., 30(3), 418–422
References: (click to open/close) | Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207-225. Ali, S., Farooq, M. A., Yasmeen, T., Hussain, S., Arif, M. S., Abbas, F., Bharwana, S. A. & Zhang, G. (2013). The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ. Saf., 89, 66–72 [PubMed] [Google Scholar]. Andrade, C. C. L., Resende, R. S., Rodrigues, F., Ferraz, H. G. M., Moreira, W. R. & Oliveira, J. R. (2013). Silicon reduces bacterial speck development on tomato leaves. Trop. Plant Pathol., 38, 436–442. doi: 10.1590/S1982- 56762013005000021. Araujo, L., Paschoalino, R. S. & Rodrigues, F. (2015). Microscopic aspects of silicon-mediated rice resistance to leaf scald. Phytopathology, 106, 132–141. doi: 10.1094/PHYTO-04-15-0109-R. Artyszak, A., Gozdowski, D. & Kucińska, K. (2015). The effect of calcium and silicon foliar fertilization in sugar beet. Sugar Tech., 1. DOI 10.1007/s12355-015-0371-4. Belanger, R. R., Benhamou, N. & Menzies, J. G. (2003). Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 93, 402–412. doi: 10.1094/Phyto.2003.93. 4.402. Brecht, M. O., Datnoff, L. E., Kucharek, T. A. & Nagata, R. T. (2007). The influence of silicon on the components of resistance to gray leaf spot in St. Augustinegrass. J. Plant Nutr., 30, 1005–1021. doi: 10.1080/01904160701394287. Bocharnikova, E. A. & Matichenkov, V. V. (2012). Influence of plant associations on the silicon cycle in the soil-plant ecosystem. Applied Ecology and Environmental Research, 10, 547–560. Campbell, C. K. & Johnson, E. M. (2013). Identification of Pathogenic Fungi. John Wiley & Sons, 352. Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11, 1-42. Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91, 11–17. Guntzer, F., Keller C. & Meunier, J. D. (2012). Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32, 201–213. Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science, 177, 831–844. Hodson, M., White, P., Mead, A. & Broadley, M. (2005). Phylogenetic variation in the silicon composition of plants. Ann. Bot., 96, 1027–1046. [PMC free article] [PubMed] [Google Scholar]. Jayawardana, H. A. R. K., Weerahewa, H. L. D. & Saparamadu, M. D. J. S. (2016). The mechanisms underlying the Anthracnose disease reduction by rice hull as a silicon source in capsicum (Capsicum annuum L.) grown in simplified hydroponics. Procedia Food Sci., 6, 147–150. doi: 10.1016/j.profoo.2016.02.035. L., Lagauche, A., Delvaux, B. & Legrève, A. (2012). Silicon reduces black sigatoka development in banana. Plant Dis., 96, 273–278. doi: 10.1094/pdis-04- 11-0274. Kanto, T., Miyoshi, A., Ogawa, T., Maekawa, K. & Aino, M. (2006). Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. J. Gen. Plant Pathol., 72, 137–142. doi: 10.1007/s10327-005-0270-8. Kim, M. S., Kim, Y. H. & Yang, J. E. (2010). Changes of organic matter and available silica in paddy soils from fifty-six years fertilization experiments. In: Proceedings of 19th World Congress of Soil Science, Soil Solution for a Changing World. 1–6 August 2010, Brisbane, 56–58. Lee, Y. B. & Kim, P. J. (2007). Reduction of phosphate adsorption by ion competition with silicate in soil. Korean Journal of Environmental Agriculture, 26, 286–293. Ma, J. F. & Yamaji, N. (2008). Functions and transport of silicon in plants. Cell. Mol. Life Sci., 65, 3049–3057. doi: 10.1007/s00018-008-7580-x. Matichenkov, V. (2008). Silicon deficiency and functionality in soils, crops and food. In: Proceedings of II International Conference on Soil and Compost Eco-Biology, Puerto de la Cruz, Tenerife, November 26–29, 207–213. McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J. Agri Res., 2, 195-217. Moldes, C. A., De Lima Filho, O. F., Merini, L. J., Tsai, S. M. & Camiña, J. M. (2016). Occurrence of powdery mildew disease in wheat fertilized with increasing silicon doses: a chemometric analysis of antioxidant response. Acta Physiol. Plant., 38, 206. doi: 10.1007/s11738-016-2217-4. Montpetit, J., Vivancos, J., Mitani-Ueno, N., Yamaji, N., Rémus-Borel, W., Belzile, F., Ma, J. F. & Bélanger, R. R. (2012). Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol. Biol., 79, 35–46. [PubMed] [Google Scholar]. Muneer, S. & Jeong, B. R. (2015). Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul., 77, 133–146. https://doi.org/10.1007/s10725-015-0045-y. Polanco, L. R., Rodrigues, F. A., Nascimento, K. J., Cruz, M. F., Curvelo, C. R. & Damatta, F. M. (2014). Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Trop. Plant Pathol., 39, 35–42. doi: 10.1590/S1982- 56762014000100005. Ratnayake, R. M. R. N. K., Daundasekera, W. A. M., Ariyarathne, H. M. & Ganehenege, M. Y. U. (2016). Some biochemical defense responses enhanced by soluble silicon in bitter gourd-powdery mildew pathosystem. Australas. Plant Pathol., 45, 425–433. doi: 10.1007/s13313-016-0429-0. Remus-Borel, W., Menzies, J. G. & Belanger, R. R. (2005). Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant Pathol., 66, 108–115. doi: 10.1016/j.pmpp.2005.05.006. Resende, R. S., Rodrigues, F., Costa, R. V. & Silva, D. D. (2013). Silicon and fungicide effects on anthracnose in moderately resistant and susceptible sorghum lines. J. Phytopathol., 161, 11–17. doi: 10.1111/jph.12020. Reynolds, O. L., Padula, M. P., Zeng, R. S. & Gurr, G. M. (2016). Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front. Plant Sci., 7, 744. doi: 10.3389/fpls.2016.00744. Rodrigues, F. A., Resende, R. S., Dallagnol, L. J. & Datnoff, L. E. (2015). Silicon Potentiates Host Defense Mechanisms against Infection by Plant Pathogens. Cham: Springer International Publishing., 109-138. doi: 10.1007/978-3-319-22930-0_5. Sakr, N. (2016). The role of silicon (Si) in increasing plant resistance against fungal diseases. Hell. Plant Protect. J., 9, 1–15. doi: 10.1515/hppj-2016-0001 Sommer, M., Kaczorek, D., Kuzyakov, Y. & Breuer, J. (2006). Silicon pools and fluxes in soils and landscapes – A review. Journal of Plant Nutrition and Soil Science, 169, 310–329. Szulc, W., Rutkowska, B., Hoch, M., Spychaj-Fabisiak, E. & Murawska, B. (2015). Exchangeable silicon content of soil in a long-term fertilization experiment. Plant Soil Environ., 61(10), 458–461. Whan, J. A., Dann, E. K. & Aitken, E. A. (2016). Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defences in root tissues of two cotton cultivars. Ann. Bot., 118, 219–226. doi: 10.1093/aob/ mcw095. Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M. & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. Biotech., 9(3), 73. doi: 10.1007/s13205-019-1613-z. Epub 2019 Feb 9. PMID: 30800584; PMCID: PMC6368905.
|
|
| Date published: 2024-06-25
Download full text