Fungal suspension in combination with compost leads to changes in soil microbiota for fertility improvement
Lyudmila Kabaivanova
, Lilyana Nacheva, Nikolai Dinev
Abstract: Soil formation processes occurring in the environment are greatly dependent on the activities of microorganisms that inhabit it - bacteria, actinomycetes and microscopic fungi. Having in mind the well known biocontrol potential of Trichoderma viride against a wide range of soil phytopathogens, the study presents the effect of addition of a microbiological preparation - Trichoderma viride suspension to compost (residue from methane production) as a bioorganic improver. It was applied to alluvial meadow and cinnamon forest poor soils to evaluate how the quantity of ammonifying and cellulose degrading microorganisms, actinomycetes, bacteria, utilizing mineral nitrogen and microscopic fungi changes. The number of ammonifying microorganisms, actinomycetes and bacteria, utilizing mineral nitrogen and cellulose degrading microorganisms in the alluvial meadow soil with the addition of compost and fungal suspension increased greatly and to a lower extent for the cinnamon forest soil, but the amount of microscopic fungi decrease for both types of soil. Soil fertility improvement was followed, when tomatoes (Solanum lycopersicum L.) were grown in pure soil, soil, supplemented with compost and soil with compost and Trichoderma viride suspension, where the last treatment proved enhanced growth, estimated by the stem and leaves size and surface.
Keywords: compost; soil fertility improvement; Trichoderma viride suspension
Citation: Kabaivanova, L., Nacheva, L. & Dinev, N. (2024). Fungal suspension in combination with compost leads to changes in soil microbiota for fertility improvement. Bulg. J. Agric. Sci., 30(3), 408–411
References: (click to open/close) | Alef, K. & Nannipieri, P. (1998). Methods in applied soil microbiology and biochemistry. 2nd edition. Academic Press Ltd, London, p. 576. Alizadeh, M., Vasebi, Y. & Safaie, N. (2020). Microbial antagonists against plant pathogens in Iran: A review. Open Agric., 5, 404–440. Bhatti, A. A, Haq, S. & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microb. Pathogen., 111, 458-467. Chowdhury, S. P., Babin, D., Sandmann, M., Jacquiod, S., Sommermann, L., Sørensen, S. J., Fliessbach, A., Mäder, P., Geistlinger, J., Smalla, K., Rothballer, M. & Grosch R. (2019). Effect of long-term organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environ. Microbiol., 21, 2426-2439. Contreras-Cornejo, H. A., Macías-Rodríguez, L., Vergara, A. G. & López-Bucio J. (2015). Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. J. Plant Growth Regul., 34, 425-432. Georgieva, O. & Karadzhova, N. (2020). Application of growth regulators and saprophytic fungi Trichoderma viride pers ex. fr. to improve the sanitary condition of the soil under pepper. Bulg. J. Soil Sci., 5(2), 93-100. Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F. & Zitouni A. (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J. Microbiol. Biotechnol., 10, 1821-1829. Goushterov, G., Andonov, P., Todorov, Ts., Kominkov, L. & Gincheva-Starcheva M. (1977). Practicum on microbiology and virology. Second edition, Science and Art, Sofia (Bg). Ho, T. T. K., Tra, V. T., Le, T. H., Nguyen, N. K. Q., Tran, G. S., Nguyen, P. T., Vo, T. D. H., Thai, V. N. & Bui, X.T. (2022). Compost to improve sustainable soil cultivation and crop productivity. Case Stud. Chem. Environ. Eng., 6, 100211. Hozzein, W. N., Abuelsoud, W., Wadaan, M. A. M., Shuikan, A. M., Selim, S., Al Jaouni, S. & AbdElgawad, H. (2019). Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Sci. Total Environ., 651(2), 2787-2798. Jain, A., Sarsaiya, S., Wu, Q., Lu, Y. & Shi, J. (2019). A review of plant leaf fungal diseases and its environment speciation. Bioengineered, 10, 409–424. Lanzuise, S., Manganiello, G., Guastaferro, V. M., Vincenzo, C., Vitaglione, P., Ferracane, R., Vecchi, A., Vinale, F., Kamau, S., Lorito, M. & Woo, S. L. (2022). Combined biostimulant applications of Trichoderma spp. with fatty acid mixtures improve biocontrol activity, horticultural crop yield and nutritional quality. Agronomy, 12(2), 275. Mitra, D., Mondal, R., Khoshru, B., Senapati, A., Radha, T. K., Mahakur, B., Uniyal, N., Myo, E. M., Boutaj, H., Sierra B. E. G., Panneerselvam, P., Ganeshamurthy, A. N., Elković, S. A., Vasić, T., Rani, A., Dutta, S. & Mohapatra, P. K. D. (2022). Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere, 32, 149–170. Rudakov, V. (2006). Biological method in the system of plant protection. J. Greenhouse Technol., 3(8), 1-5. Tyskiewicz, R., Nowak, A., Ozimek, E. & Jaroszuk-Sciseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci., 23, 2329. Zin, N. A. & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Ann. Agri. Sci., 65(2), 168-178.
|
|
| Date published: 2024-06-25
Download full text