Nutritional value and antioxidant activity of sprouts from seeds of Carica papaya their benefits for broiler nutrition
Wike Winarti, Turrini Yudiarti, Endang Widiastuti, Hanny Indrat Wahyuni, Tri Agus Sartono, Sugiharto Sugiharto
Abstract: The impact of germination on nutritional and antioxidant properties of papaya seeds was evaluated. Germination began with soaking of dried seeds and germinating at room temperature for 15 days. The experiment were designed as a 2×2 factorial (papaya varieties and germination) with four replicates. Total germination was higher in Bangkok than in California. Crude protein and moisture contents were higher, while crude fat, total energy and energy from fat were lower in Bangkok than its counterpart. Total unsaturated fatty acids (FA) and n-3 polyunsaturated FA were higher in California than in Bangkok. Amino acids (L-serine, L-alanine, L-lysine, L-tyrosine, L-proline and L-threonine) differed between Bangkok and California. Antioxidant activity was higher in California. Sprouting increased crude protein, crude fibre and moisture, while decreasing ash, crude fat, total energy and energy from fat. Germination decreased total saturated FA, while increasing n-3 and n-6 polyunsaturated FA. Sprouting increased antioxidant activity and amino acid L-phenylalanine and L-threonine, L-alanine, L-aspartate, L-proline, L-serine and L-tyrosine. In conclusion, Bangkok variety showed better germination indexes, higher crude protein and lower crude fat and energy than those of California. California papaya had higher unsaturated FA and n-3 polyunsaturated FA. Sprouting increased crude protein, crude fibre, moisture, n-3 and n-6 polyunsaturated FA, amino acids and antioxidant activity, while decreasing ash, crude fat, energy and saturated FA.
Keywords: amino acids; antioxidant; fatty acids; germination; papaya seed; variety
Citation: Winarti, W., Yudiarti, T., Widiastuti, E., Wahuni, H., Sartoro, T. A. & Sugiharto, S. (2024). Nutritional value and antioxidant activity of sprouts from seeds of Carica papaya – their benefits for broiler nutrition. Bulg. J. Agric. Sci., 30(1), 107–114.
References: (click to open/close) | Ameen, S. A., Adedeji, O. S., Ojedapo, L. O., Salihu, T. & Fakorede, O. L. (2012). Anthemintic efficacy of pawpaw (Carica papaya) seeds in commercial layers. African Biotechnology, 11(1), 126-134. AOAC (1995). Official methods of analysis of the Association of Analytical Chemists. OAOC International, Washington, DC. Atlaw, T. K. & Kumar, J. Y. (2018). Effect of germination on nutritional composition and functional properties of fenugreek (Trigonella foenum-graecum Linn) seed flour. Food Science and Quality Management, 76, 18-23. Statistics Indonesia (BPS) (2019). Fruit Consumption in Indonesia in 2019. Jakarta: Statistics Indonesia. Statistics Indonesia (BPS) (2019). Fruit Crop Production in 2019. Jakarta: Statistics Indonesia. Statistics Indonesia (BPS) (2020). Fruit Crop Production in 2020. Jakarta: Statistics Indonesia. Benincasa, P., Falcinelli, B., Utts, S., Stagnari, F. & Galieni, A. (2019). Sprouted grains: a comprehensive review. Nutrients, 11(2), 1-29. Brown, J. E., Bauman, J. E., Lawrie, J. F., Rocha, O. J. & Moore, R. C. (2012). The structure of morphological and genetic diversity in natural populations of Carica papaya (caricaceae) in Costa Rica. Biotropica, 44(2), 179-188. Choi, I., Suh, S. J., Kim, J. H. & Kim, S. L. (2009). Effects of germination on fatty acid and free amino acid profiles of brown rice ‘keunnun’. Food Science and Biotechnology, 18(3), 799-802. Chon, S. U. (2013). Total polyphenols and bioactivity of seeds and sprouts in several legumes. Current Pharmaceutical Design, 19(34), 6112-6124. Dakare, M. A., Ameh, D. A. & Agbaji, A. S. (2011). Biochemical assessment of ‘Daddawa’ food seasoning produced by fermentation of pawpaw (Carica papaya) seeds. Pakistan Journal of Nutrition, 10(3), 220-223. Das, S. C., Dinesh, M. R., Das, A. & Suresh, C. P. (2014). Studies on fruit set and germination in some papaya cultivars. Acta Horticultura, 10(22), 87-89. Dassidi, N., Oumbortime, N., Kouame, Y. A. E., Kokou, V., Decuypere, E., Gbeassor, M., Onagbesan, O. & Tona, K. (2020). Effect of pawpaw (Carica papaya) seed diets on production performance of boiler breeders and hatching parameter. International Journal of Poultry Science, 19(1), 1-9. Devi, V. B., Kshwaha, A. & Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). Food Science and Technology, 52(10), 6821-6827. Doria, E., Pagano, A., Ferreri, C., Larocca, A. V., Macovei, A., Araujo, S. D. S. & Balestrazzi, A. (2019). How does the seed pre germinative metabolism fight against imbibition damage? Emerging roles of fatty acid cohort and antioxidant defense. Frontiers in Plant Science, 10(1505), 1-13. Elobuike, C. S., Idowu, M. A., Adeola, A. A. & Bakare, H. A. (2021). Nutritional and functional attributes of mungbean (Vigna radiata [L] Wilczek) flour as affected by sprouting time. Legume Science, 3(4), 1-11. Falcinelli, B., Famiani, F., Paoletti, A., D’Egidio, S., Stagnari, F., Galieni, A. & Benincasa, P. (2020). Phenolic compounds and antioxidant activity of sprouts from seeds of citrus species. Agriculture, 10(33), 1-9. Ferdiawan, N., Nurwantoro, N. & Dwiloka, B. (2019). The effect of germination time on the physical and chemical properties of Tolo bean flour (Vigna unguiculata L). Journal of Food Technology, 3(2), 349–354. Fouad, A. A. & Rehab, F. M. A. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris medik.) sprouts. Acta Scientiarum Polonorum, Technologia Alimentaria, 14(3), 233-246. Ghasemzadeh, A., Jaafar, H. Z. E. & Rahmat, A. (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 15(6), 4324–4333. Hernández, J. C. Á. & Tapia-Vargas, L. M. (2019). Selection of outstanding papaya plants in commercial environments for breeding purposes. Revista Mexicana de Ciencias Agrícolas, 10(23), 303-311. Holland, B., Welch, A. A., Unwin, I. D., Buss, D. H., Paul, A. A. & Southgate, D. A. T. (1998). The composition of foods. London: The Royal Society of Chemistry. Hssaini, L., Hanine, H., Charafi, J., Razouk, R., Elantari, A., Ennahli, S., Alvares, F. & Ouaabou, R. (2020). First report on fatty acids composition, total phenolics and antioxidants activity in seeds oil of four fig cultivars (Ficus carica L.) grow in Morocco. Oilseeds and Fats Crops and Lipid, 27(8), 3-10. Kouamé, D. A. I., Faulet, B. W., Ekissi, G. S. E., Fagbohoun, B. J. & Kouame, P. L. (2018). Effects of sprouting time on physicochemical and biochemical parameters of oil extracted from sesame (Sesamum indicum L.) Seeds grown in Côte d’Ivoire. International Journal of Current Research, 10(6), 70358-70364. Lestari, A. R. A., Syahfitri, S. A., Cahyo, S. T., Wardaniati, I. & Herli, M. A. (2018). Antibacterial activity of papaya seed infusion (Carica papaya L.) on Escherichia coli, Salmonella thypi and Staphlycocus aureus. Pharmacy and Science, 1(2), 39-45. Maisarah, A., Asmah, M. R. & Fauziah, O. (2014). Proximate analysis, antioxidant and anti-proliferative activities of different parts of Carica papaya. Journal of Tissue Science and Engineering, 5(1), 1-7. Malacrida, C. R., Kimura, M. & Jorge, N. (2011). Characterization of a high oleic oil extracted from papaya (Carica papaya L.) seeds. Ciência e Tecnologia de Alimentos, 31(4), 929–934. Martínez, M., Díaz, M. F., Hernández, Y. & Sierra, S. F. (2013). Replacement of commercial soybean (Glycine max) by germinated and non-germinated raw grain meal in broiler diets. Livestock Research for Rural Development, 25(7), 1-10. Masood, T., Shah, U. & Zeb, A. (2014). Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer arietinum L.) seeds. Journal of Animal and Plant Science, 24(3), 850-859. Megat, R. M. R., Azrina, A. & Norhaizan, M. E. (2016). Effect of germination on total dietary fibre and total sugar in selected legumes. International Food Research Journal, 23(1), 257-261. Nwofia, G. E., Ojimelukwe, P. & Eji, C. (2012). Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L) morphotypes. International Journal of Medicinal and Aromatic Plants, 2(1), 200-206. Orak, H. H. (2006). Total antioxidant activities, phenolics, anthocyanin, polyphenoloxidase activities and its correlation of some important red wine grape varieties, which are grown in Turkey. EJPAU, 9(18), 235-241. Oyeleke, G. O., Adetoro, R. O., Sulaiman, W. K. & Adebisi, A. A. (2017). Amino acid and functional characteristics of pawpaw (Carica papaya) seeds under normal storage ripening. Advance Research, 10(2), 1-6. Santos, C. M. D., Abreu, C. M. P. D., Freire, J. M., Queiroz, E. D. R. & Mendonca, M. M. (2014). Chemical characterization of the flour of peel and seed from two papaya cultivars. Food Science and Technology, 34(2), 353-357. Shirvani, A., Jafari, M., Goli, S. A. H., Tehrani, N. S. & Rahimmalek, M. (2016). The changes in proximate composition, antioxidant activity and fatty acid profile of germinating safflower (Carthamus tinctorius) seed. Journal of Agricultural Science and Technology, 18, 1967-1974. Sugiharto, S. (2020). Papaya (Carica papaya L.) seed as a potent functional feedstuff for poultry – A review. Veterinary World, 13(8), 1613–1619. Sugiharto, S. (2021). The use of sprouted grains as dietary feed ingredients for broilers-a brief overview. Livestock Research for Rural Development, 33(3), 1-6. Sugiharto, S., Yudiarti, T., Isroli, I., Widiastuti, E., Wahyuni, H. I. & Sartono, T. A. (2019). Fermented feed as a potential source of natural antioxidants for broiler chickens–a mini review. Agriculturae Conspectus Scientificus, 84(4), 313-318. Sulieman, M. A., Eltayeb, M. M. & Babiker, E. E. (2008). Effect of sprouting on chemical composition and amino acid content of Sudanese lentil cultivar. Journal of Applied Science, 8(12), 2337-2340. Szkudzinska, K., Smutniak, I., Rubaj, J., Korol, W. & Bielecka, G. (2017). Method validation for determination of amino acids in feed by UPLC. Accreditation and Quality Assurance, 22, 247–52. Tarasevičienė, Ž., Danilčenko, H., Jarienė, E., Paulauskienė, A. & Gajewski, M. (2009). Changes in some chemical components during germination of broccoli seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 173-176. Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A. & Gajewski, M. (2019). Effects of germination time on the antioxidant properties of edible seeds. CyTA-Journal of Food, 17(1), 447-454. Wu, N., Fu, K., Fu, Y. J., Zu, Y. G., Chang, F. R., Chen, Y. H., Liu, X. L., Kong, Y., Liu, W. & Gu, C. B. (2009). Antioxidant activities of extracts and main components of pigeonpea (Cajanus cajan (L.) Millsp.) leaves. Molecules, 14(3), 1032-1043. Yanty, N. A. M., Marikkar, J. M. N., Nusantoro, B. P., Long, K. & Ghazali, H. M. (2014). Changes in some chemical components during germination of broccoli seeds. Journal of Oleo Science, 63(9), 885-892. Zhao, M., Zhang, H., Yan, H., Qiu, L. & Baskin, C. C. (2108). Mobilization and role of starch protein, and fat reserve during seed germination of six wild grassland species. Frontiers in Plant Science, 8(9), 1-11.
|
|
| Date published: 2024-02-26
Download full text