Feeding strategies to reduce methane emissions: A review
Krum Nedelkov
, Teodora Angelova, Jivko Krastanov, Milena Mihaylova
Abstract: This review provides information on the influence of the ration composition, botanical composition of the pasture grass, and the type and quality of the silages on the release of methane emissions in livestock farming. Modeling rumen fermentation is the most important method to optimize feed utilization, ensure maximum microbial protein synthesis, increase productivity, and limit released methane emissions as a result of the digestion processes. There is a limited number of studies on the effect of feeding systems and feeding regimes, as well as the extent of methane emissions released from the digestion of sheep, goats, buffalo, and other ruminants. Feeding strategies need to be revised and developed, which should minimize ruminant energy loss and lead to increased productivity by reducing the number or activity of methanogens. Although methane production can be reduced by current strategies, due to the variety of adaptive mechanisms, they may only be effective temporarily. Therefore, further research is needed to study the effect of rations and rumen fermentation inhibitors with particular attention to methane production and changes in methanogenic microorganisms.
Keywords: feeding strategies; methane; reduction
Citation: Nedelkov, K., Angelova, T., Krastanov, J. & Mihaylova, M. (2024). Feeding strategies to reduce methane emissions: A review. Bulg. J. Agri. Sci., 30(1), 28–36.
References: (click to open/close) | Agle, M., Hristov, A. N., Zaman, S., Schneider, C., Ndegwa, P. M. & Vaddella, V. K. (2010). Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. Journal of Dairy Science, 93(9), 4211–4222. Aguerre, M. J., Wattiaux, M. A., Powell, J. M., Broderick, G. A. & Arndt, C. (2011). Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci., 94, 3081–3093. Allen, V. G., Fontenot, J. P., Notter, D. R. & Hammes, R. C. Jr. (1992). Forage systems for beef production from conception to slaughter: cow-calf production. Journal of Animal Science, 70, 576–587. Archimède, H., Eugène, M., Magdeleine, C. M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. (2011). Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol., 166, 59–64. Balthrop, J., Brand, B., Cowie, R. A., Danier, J., De Boever, J., de Jonge, L., Jackson, F., Makkar, H. P. S. & Piotrowski, C. (2011). Quality assurance for animal feed analysis laboratories. FAO Animal Production and Health Manual No.14. Food and Agriculture Organization (FAO), Rome, Italy. Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S. & Dijkstra, J. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim. Feed Sci. Technol., 143, 3–26. Basarab, J., Baron, V., Lopez-Campos, O., Aalhus, J., Haugen-Kozyra, K. & Okine, E. (2012a). Greenhouse gas emissions from calf-and yearling-fed beef production systems, with and without the use of growth promotants. Animals, 2, 195–220. Beauchemin, K. A. & McGinn, S. M. (2005). Methane emissions from feedlot cattle fed barley or corn diets. Journal of Animal Science, 83, 653–661. Beauchemin, K. A., Kreuzer, M., Mara, F. O. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric., 48, 21–27. Beauchemin, K. A., McAllister, T. & McGinn, S. M. (2009). Dietary mitigation of enteric methane from cattle. CAB Reviews, 4, 1–18. Beauchemin, K. A., Janzen, H. H., Little, S. M., McAllister, T. A. & McGinn, S. M. (2010) Life cycle assessment of greenhouse gas emissions from beef production in Western Canada: A Case Study. Agricultural Systems, 103, 371-379. Blaxter, K. L. & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. Br. J. Nutr., 19, 511–522. Capper, J. L. (2011). The environmental impact of beef production in the United States: 1977 compared with 2007. Journal of Animal Science, 89, 4249–4261. Coppock, C. E. (1977). Feeding methods and grouping systems. J. Dairy Sci., 60, 1327–1336. Cottle, D. J., Nolan, J. V. & Wiedemann, S. G. (2011). Ruminant enteric methane mitigation: a review. Animal Production, 51, 491-514. Crompton, L. A., Mills, J. A. N., Reynolds, C. K., France, J., Sauvant, D., van Milgen, J., Faverdin, P. & Friggens, N. (2010). Fluctuations in methane emission in response to feeding pattern in lactating dairy cows. In: 7th International Workshop on Modelling Nutrient Digestion and Utilisation in Farm Animals, Paris, France, Wageningen Academic Publishers, Wageningen, Netherlands. 176–180. de Souza Filho, W., de Albuquerque Nunes, P. A., Santiago Barro, R., Robinson Kunrath, T., Menezes de Almeida, G., Moraes Genro, T. C., Bayer, C. & de Faccio Carvalho, P. C. (2019). Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, 213, 968-975. Department for Environment, Food and Rural Affairs (DEFRA) (2010). Ruminant nutrition regimes to reduce methane and nitrogen emmissions. Project AC0209 Report. DEFRA, Procurements and Contracts Division (Science R&D Team). http://randd.defra.gov.uk/Document.aspx?Document=AC0209_10114_FRP.pdf DeRamus, H. A., Clement, T. C., Giampola, D. D. & Dickison, P. C. (2003). Methane emissions of beef cattle on forages: Efficiency of grazing management systems. J. Environ. Qual., 32, 269–277. Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T. & Lewis, E. (2009). Nutritive value of forage legumes used for grazing and silage. Irish Journal of Agricultural and Food Research, 48, 167–187. Dewhurst, R. J. (2012). Milk production from silage: Comparison of grass, legume and maize silages and their mixtures. In: Kuoppala, K., Rinne, M.,Vanhatalo, A. editors, Proc. XVI Int. Silage Conf. MTT Agrifood Research Finland, University of Helsinki. Hameenlinna, Finland. 134–135. Dhiman, T. R., Zaman, M. S., MacQueen, I. S. & Boman, R. L. (2002). Influence of corn processing and frequency of feeding on cow performance. J. Dairy Sci., 85, 217–226. Dohme, F., Machmuller, A., Esterman, B. L., Pfister, P., Wasserfallen, A. & Kreuzer, M. (1999). The role of the rumen protozoa for methane suppression caused by coconut oil. Letters in Applied Microbiology, 29, 187-192. https://doi.org/10.1046/j.1365-2672.1999.00614.x Doreau, M., Rochette, Y. & Martin, C. (2012). Effect of type of forage (maize silage vs. grass silage) and protein source (soybean meal vs. dehydrated lucerne) in dairy cow diet on methane emission and on nitrogen losses. In: Proc. Symp. Emissions of Gas and Dust by Livestock, Saint-Malo, France, 4. Ellis, J. L., Dijkstra, J., France, J., Parsons, A. J., Edwards, G. R., Rasmussen, S., Kebreab, E. & Bannink, A. (2012b). Effect of high-sugar grasses on methane emissions simulated using a dynamic model. J. Dairy Sci., 95, 272–285. Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R. K. (1997). Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science, 278, 1457–1462. https://doi.org/10.1126/science.278.5342.1457 Ferris, C. P., Gordon, F. J., Patterson, D. C., Porter, M. G. & Yan, T. (1999). The effect of genetic merit and concentrate proportion in the diet on nutrient utilisation by lactating dairy cows. J. Agric. Sci., 132, 483–490. Flatt, W. P., Moe, P. W., Munson, A. W. & Cooper, T. (1969). Energy utilization by high producing dairy cows. Summary of energy balance experiments with lactating Holstein cows. In: Blaxter, K. L., Kielanowski, J., Thorbek, G. editors, Energy Metabolism of Farm Animals, Volume 12. European Association for Animal Production, Warsaw, 235–251. Garg, M. R., Sherasia, P. L., Bhanderi, B. M., Phondba, B. T., Shelke, S. K. & Makkar, H. P. S. (2013). Effects of feeding nutritionally balanced rations on animal productivity, feed conversion efficiency, feed nitrogen use efficiency, rumen microbial protein supply, parasitic load, immunity and enteric methane emissions of milking animals under field conditions. Animal Feed Science and Technology, 179(1–4), 31 January 2013, 24-35. Gerber, P. J., Hristov, A. N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Dell, C., Al Rotz, C., Adesogan, A., Yang, W. Z., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J. & Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock – A review. Animal, 7 (Suppl. 2), 220–234. Hammond, K. J., Hoskin, S. O., Burke, J. L., Waghorn, G. C., Koolaard, J. P. & Muetzel, S. (2011). Effects of feeding fresh white clover (Trifolium repens) or perennial ryegrass (Lolium perenne) on enteric methane emissions from sheep. Anim. Feed Sci. Technol., 166–167, 398–404. Hristov, A. N., Mertens, D., Zaman, S.,Vander Pol, M. & Price, W. J. (2010a). Variability in feed and total mixed ration neutral-detergent fiber and crude protein analyses among commercial laboratories. J. Dairy Sci., 93, 5348–5362. Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J. B. & Henderson, J. M. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91(11), 5045–5069. https://doi.org/10.2527/jas.2013-6583. Huhtanen, P., Rinne, M. & Nousianen, J. (2007). Evaluation of the factors affecting silage intake of dairy cows: a revision of the relative silage dry-matter intake index. Animal, 1, 758-770. Hungate, R. E. (1984). Microbes of nutritional importance in the alimentary tract. Proc. Nutr. Soc., 43(1), 1–11. doi: 10.1079/pns19840021. Hungate, R. E., Smith, W., Bauchop, T., Yu, I. & Rabinowitz, J. C. (1970). Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol., 102, 389–97. Immig, I. (1996). The rumen and hindgut as source of ruminant methanogenesis. Environ. Monit.Assess., 42, 57–72. https://doi.org/10.1007/BF00394042. Innovation Center for the U. S. Dairy. 2020. 2018 U.S. Dairy Sustain. IPCC (2006). 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme (eds. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K). IGES, Japan. Iqbal, M. F., Cheng, Y. -F., Zhu, W. -Y. & Zeshan, B. (2008). Mitigation of ruminant methane production: current strategies, constraints and future options. World Journal of Microbiology and Biotechnology, 24, 2747-2755. Johnson, A. & Johnson, D. (1995). Methane emissions from cattle. J. Anim. Sci., 73, 2483–2492. Jordan, E., Kenny, D., Hawkins, M., Malone, R., Lovett, D. K. & O’Mara, F. P. (2006). Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. J. Anim. Sci., 84, 2418-2425. DOI: 10.2527/jas.2005-354. Maekawa, M., Beauchemin, K. A. & Christensen, D. A. (2002). Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci., 85, 1165–1175. Mathers, J. C. & Walters, D. E. (1982). Variation in methane production by sheep fed every two hours. J. Agric. Sci., 98, 633–638. McCaughey, W. P., Wittenberg, K. & Corrigan, D. (1999). Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci., 79, 221–226. McGeough, E. J., O'Kiely, P., Hart, K. J., Moloney, A. P., Boland, T. M. & Kenny, D. A. (2010). Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content. J. Anim. Sci., 88, 2703–2716. Miller, T. L., Wolin, M. J., Hongxue, Z. & Bryant, M. P. (2002). Characteristics of Methanogens isolated from bovine rumen. Applied and Environmental Microbiology. American Society for Microbiology. 51, 201-202. https://doi.org/10.1128/AEM.51.1.201-202.1986. Moss, A. R., Jouany, J. P. & Newbold, J. (2000). Methane production by ruminants: its contribution to global warming. Ann. Zootech., 49, 231-253. https://doi.org/10.1051/animres:2000119 , Nutrition Update , 10(1), May, 1999. Muller, H. L., Sax, J. & Kirchgessner, M. (1980). Effect of frequency of feeding on energy losses in faeces, urine and methane in nonlactating and lactating cows. Journal of Animal Physiology, Animal Nutrition and Feed Science, 44, 181–189. Newbold, C. J. & Ramos-Morales, E. (2020). Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal, 14(S1), s78–s86. doi:10.1017/S1751731119003252. Nocek, J. E. & Braund, D. G. (1985). Effect of feeding frequency on diurnal dry matter and water consumption, liquid dilution rate, and milk yield in first lactation. J. Dairy Sci., 68, 2238–2247. Nocek, J. E., Steele, R. L. & Braund, D. G. (1986). Performance of dairy cows fed forage and grain separately versus a total mixed ration. J. Dairy Sci., 69, 2140–2147. Parsons, A. J., Rowarth, J. S. & Rasmussen, S. (2011). High-sugar Grasses. CAB Rev., 6, 1–12. Pinares-Patiño, C. S., D'hour, P., Jouany, J. P. & Martin, C. (2007). Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ., 121(1-2), 30–46. Ramin, M. & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. J. Dairy Sci., 96, 2476–2493. http://dx.doi.org/ 10.3168/jds.2012-6095. Röhrmoser, G., Müller, H. L. & Kirchgessner, M. (1983). Energy balance and energy utilization of lactating cows with restricted protein supply and subsequent refeeding. Journal of Animal Physiology, Animal Nutrition and Feed Science, 50, 216–224. Sauvant, D. & Giger-Reverdin, S. (2009). Modeling digestive interactions and methane production in ruminants. INRA Prod. Anim., 22, 375–384. Staerfl, S. M., Amelchanka, S. L., Kälber, T. & Soliva, C. R., Kreuzer, M. & Zeitz, J. O. (2012). Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest. Sci., 150, 293–301. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V. & Rosale, M. (2006). Livestock'slong shadow: environmental issues and options. Food and Agriculture Organization of the United Nations: Rome. Retrieved January 30, 2012http://www.fao.org/docrep/010/a0701e/a0701e00.htm. Sun, X. Z., Hoskin, S. O., Muetzel, S., Molano, G. & Clark, H. (2011). Effect of chicory (Cichorium intybus) and perennial ryegrass (Lolium perenne) on methane emissions in vitro and from sheep. Anim. Feed Sci. Technol., 166–167, 391–397. Tamminga, S., Bannink, A., Dijkstra, J. & Zom, R. (2007). Feeding strategies to reduce methane loss in cattle. Lelystad: Animal Sciences Group (Report/Animal Sciences Group), 34–44. Tyrrell, H. F. & Moe, P. W. (1972). Net energy value for lactation of a high and low concentrate ration containing corn silage. J. Dairy Sci., 55, 1106–1112. Van Middelaar, C. E., Berentsen, P. B. M., Dijkstra, J. & De Boer, I. J. M. (2012). Evaluation of a feeding strategy to reduce greenhouse gas emissions from milk production: The level of analysis matters. J. Anim. Sci., 90(Suppl. 3), 707. Vellinga, T. V. & Hoving, I. E. (2011). Maize silage for dairy cows: Mitigation of methane emissions can be offset by land use change. Nutr. Cycling Agroecosyst., 89, 413–426. Verge, X. P. C., Dyer, J. A., Desjardins, R. L. & Worth, D. (2008). Greenhouse gas emissions from the Canadian beef industry. Agricultural Systems, 98, 126–134. Waghorn, G. C., Tavendale, M. H. & Woodfield, D. R. (2002). Methanogenesis from forages fed to sheep. Proc. N. Z. Grassland Assoc., 64, 167–171. Wuebbles, J. & Hayhoe, K. (2002). Atmospheric methane and global change. Earth Sci. Rev., 57, 117–210. Yan, T., Agnew, R. E., Gordon, F. J. & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci., 64, 253–263.
|
|
| Date published: 2024-02-26
Download full text