Mechanisms of inheritance in durum wheat genotypes
Krasimira Taneva, Rangel Dragov, Spasimira Nedyalkova, Violeta Bozhanova
Abstract: Creating high-yielding cultivars with improved grain quality is a major priority in durum wheat breeding. Variability, heritability and genetic advance were studied for the following traits: grain yield, plant height, productive tillering, spike length, number of spikelets per spike, number of kernels per spike, kernels weight per spike, thousand kernel weight, protein content, wet gluten content, SDS–sedimentation value, yellow pigments content, vitreousness and test weight of 90 durum wheat genotypes of different origins. The phenotypic coefficient of variation (PCV) was established to be higher than the genotypic coefficient of variation (GCV) for all studied traits, which reflects the impact of the environmental conditions on the variation of these traits. The highest phenotypic (PCV-41.66%) and genotypic (GCV-41.39%) coefficients of variation were established for sedimentation value. High broad-sense heritability coefficients (h2BS) were established for almost all studied traits. The heritability for these traits ranged from 54.74% for number of kernels per spike to 98.72% for SDS-sedimentation value. The lowest coefficient of heritability was established for kernels weight per spike – 5.5%. High genetic advance as a percentage of the mean was calculated for the following traits: SDS-sedimentation value (84.71%) and grain yield (20.95%). A high heritability coefficient combined with high genetic advance was found for the following traits: SDS-sedimentation value and grain yield. This shows the presence of additive gene effects in the exression of these traits and therefore direct selection by these traits is possible under our conditions.
Keywords: genetic advance; genotypic coefficient of variation; heritability; phenotypic coefficient of variation; qualitative traits of grain
Citation: Taneva, K., Dragov, R., Nedyalkova, S. & Bozhanova, V. (2023). Mechanisms of inheritance in durum wheat genotypes. Bulg., J. Agric. Sci., 29(6), 1112–1119.
References: (click to open/close) | Adhikari, B. N., Joshi, B. P., Shrestha, J. & Bhatta, N. R. (2018). Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). Journal of Agriculture and Natural Resources, 1(1), 149–160. DOI: https://doi.org/10.3126/janr.v1i1.22230. Akcura, M. (2009). Genetic variability and interrelationship among grain yield and some quality traits in Turkish winter durum wheat landraces. Turkish Journal of Agriculture and Forestry, 33(6), 547-556. DOI: https://doi.org/10.3906/tar-0903-5. Alemu, Y. A., Anley, A. M. & Abebe, T. D. (2020). Genetic variability and association of traits in Ethiopian durum wheat (Triticum turgidium L. var. durum) landraces at Dabat Research Station, North Gondar. Cogent Food & Agriculture, 6, 1778604. DOI: https://doi.org/10.1080/23311932.2020.1778604. Al-Naggar, A. M. M., Atta, M. M., El-Moneim, M. L. A. B. D. & Al-Metwally, M. S. (2022). Heritability, genetic advance and trait interrelationships of Chenopodium quinoa under low, medium and high n organic and mineral fertilizer conditions. Plant Cell Biotechnology and Molecular Biology, 23(5–6), 52-73. DOI: 10.56557/pcbmb/2022/v23i5-67426. Asare, С., Akromah, R., Osekre, E.A., Kena, A., Amoah, S. & Annor, B. (2022). Heritability and genetic advance estimates among some selected morphological traits and fall armyworm resistance in double cross hybrid maize (Zea mays L.). Journal of Plant Biology and Crop Research, 5(2), 1069. Bayisa, T., Tefera, H. & Letta, T. (2020). Genetic variability, heritability and genetic advance among bread wheat genotypes at Southeastern Ethiopia. Agriculture, Forestry and Fisheries, 9(4), 128-134. DOI: 10.11648/j.aff.20200904.15. Bello, O. B., Ige, S. A., Azeez, M. A., Afolabi, M. S., Abdulmaliq, S. Y. & Mahamood, J. (2012). Heritability and genetic advance for grain yield and its component characters in maize (Zea Mays L.). International Journal of Plant Research, 2(5), 138-145. DOI: https://doi.org/10.5923/j.plant.20120205.01. Bendjama, А. & Ramdani, С. (2022). Genetic variability of some agronomic traits in a collection of wheat (Triticum turgidum L. sp. pl.) genotypes under South Mediterranean growth conditions. Italian Journal of Agronomy, 17, 1976. DOI: https://doi.org/10.4081/ija.2021.1976. Branković G. R., Dodig D., Zorić M. Z., Knežević D., Šurlan-Momirović G. G., Dragičvić V. & Đurić N. (2014). Effects of climatic factors on grain vitreousness stability and heritability in durum wheat. Turkish Journal of Agriculture and Forestry, 38(4), 429-440. DOI: https://doi.org/10.3906/tar-1308-51. Branković, G., Dodig, D., Pajić, V., Kandić, V., Knežević, D., Đurić, N. & Živanović, T. (2018). Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia. Zemdirbyste-Agriculture, 105(1), 39-48. DOI: https://doi.org/10.13080/z-a.2018.105.006. Choudhary, L., Goyal, V. K., Pandey, S., Moitra, P. K. & Shukla, R. S. (2020). Assessment of genetic variability in advance breeding lines of wheat. The Pharma Innovation Journal, 9(5), 239-244. Clarke, J. M. (2005). Durum wheat improvement in Canada. Durum Wheat Breeding, 2(30), 921-938. Clarke, B., Liang, R., Morell, M. K., Bird, A. R., Jenkins, C. L. D. & Li, Z. (2008). Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Functional & Integrative Genomics, 8, 211-221. DOI: https://doi.org/10.1007/s10142-007-0070-7. Clarke, F. R., Clarke, J. M., Ames, N. A., Knox, R. E. & Ross, R. J. (2010). Gluten index compared with SDS-sedimentation volume for early generation selection for gluten strength in durum wheat. Canadian Journal of Plant Science, 90(1), 1-11. DOI: https://doi.org/10.4141/CJPS09035. Dagnaw, T., Mulugeta, B., Haileselassie, T., Geleta, M. & Tesfaye, K. (2022). Phenotypic variability, heritability and associations of agronomic and quality traits in cultivated Ethiopian durum wheat (Triticum turgidum L. ssp. durum Desf.). Agronomy, 12(7), 1714. DOI: https://doi.org/10.3390/agronomy12071714. Demeke, B., Dejene, T. & Abebe, D. (2023). Genetic variability, heritability, and genetic advance of morphological, yield related and quality traits in upland rice (Oryza sativa L.) genotypes at pawe, northwestern Ethiopia. Cogent Food and Agriculture, 9, 2157099. DOI: https://doi.org/10.1080/23311932.2022.2157099. Deshmukh, S. N., Basu, M. S. & Reddy, P. S. (1992). Genetic variability, character association and path coeffi cients of quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Sciences, 56, 516-521. Devesh, P., Moitra, P. K., Shukla, R. S., Shukla, S. S., Pandey, S. & Arya, G. (2018). Analysis of variability, heritability and genetic advance of yield, its components and quality traits in wheat. International Journal of Agriculture, Environment and Biotechnology, spec. iss, 855-859. Eid, M. H. (2009). Estimation of heritability and genetic advance of yield traits in wheat (Triticum aestivum L.) under drought condition. International Journal of Genetics and Molecular Biology, 1(7), 115-120. Gautam, A., Prasad, S. V. S., Jajoo, A. & Bassi, F. M. (2023). Evaluation of Indian Durum Wheat Genotypes for Yield and Quality Traits Using Additive MainEffects and Multiplicative Interaction (AMMI) Biplot Analysis under Terminal Heat Stress Conditions. Crop Breeding, Genetics and Genomics, 5(3), e230004. DOI: https://doi.org/10.20900/cbgg20230004. Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, fourth ed. Longman, Burnt Mill, England, 464. Johnson, H. W., Robinson, H. F. & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314-318. DOI: https://doi.org/10.2134/agronj1955.00021962004700070009x. Khan, A. S. M. M. R., Kabir, M. Y. & Alam, M. M. (2009). Variability, correlation path analysis of yield and yield components of pointed gourd. Journal of Agriculture and Rural Development, 93-98. DOI: https://doi.org/10.3329/JARD.V7I1.4427. Kumar, N., Markar, S. & Kumar, V. (2014). Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Bioscience Discovery, 5(1), 64-69. Lipi, L.F., Hasan, M.J., Akter, A., Quddus, M.R., Biswas, P.L., Ansari, A. & Akter, S. (2020). Genetic variation, heritability and genetic advance in some promising rice hybrids. SAARC Journal of Agriculture, 18(2), 39–49. DOI: http://doi.org/10.3329/sja.v8i2.51107. Milatović, D., Nikolić, D. & Đurović, D. (2010). Variability, heritability and correlations of some factors affecting productivity in peach. Horticultural Science, 37(3), 79-87. DOI: 10.17221/63/2009-HORTSCI. Morteza, K., Ebadi, A. & Shiri, M. (2018). Heritability, expected genetic advance, and genotype by trait analysis for grain yield and agronomic traits in durum wheat under irrigated and rainfed conditions. Albanian Journal of Agricultural Sciences, 17(3), 150-159. Muhammad, A., Mohammad, F., Hussain, Q. & Hussain, I.A.F. (2017). Heritability estimates and correlation analysis in bread wheat (Triticum aestivum L.) under normal and late plantings. Pure and Applied Biology, 6: 1151-60. DOI: http://dx.doi.org/10.19045/bspab.2017.600123. Nishant, A. B., Arun, B. & Mishra, V. K. (2018). Genetic variability, heritability and correlation study of physiological and yield traits in relation to heat tolerance in wheat (Triticum aestivum L.). Biomedical Journal of Scientific and Technical Research, 2, 000636. DOI: https://doi.org/10.26717/BJSTR.2018.02.000636. Rajput, R. S. (2018). Correlation, path analysis, heritability and genetic advance for morpho-physiological character on bread wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 7(2), 107-112. Rapp, M., Lein, V., Lacoudre, F., Lafferty, J., Muller, E., Vida, G., Bozhanova, V., Ibraliu, A., Thorwarth, P., Piepho, H. P., Leiser, W. L., Wurschum, T. & Longin, C. F. H. (2018). Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection. Theoretical and Applied Genetics, 131(6), 1315-1329. DOI: 10.1007/s00122-018-3080-z. Roncallo, P. F., Gerardo, L., Cervigni, G. L., Jensen, C., Miranda, R. & Helguera, M. (2012). QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 185, 77-92. DOI: https://doi.org/10.1007/s10681-012-0628-x. Sissons, M. (2016). Pasta. Encyclopedia of Food Grains (2nd ed.), 3, 79–89. DOI: https://doi.org/10.1016/B978-0-12-394437-5.00123-6. Snedecor, G. W. & Cochran, W. G. (1980). Statistical methods (7th ed.). Iowa State University Press. Sravani, D., Bharathi, D., Reddi, S. M. & Kumar, A. R. (2021). Estimation of genetic parameters for quantitative traits in maize (Zea mays L.) inbred lines. The Pharm Innovation Journal, 10(8), 501-503. Sawadogo, N., Drabo, I., Ouédraogo, N., Tondé, W. H., Béré, T. L. K., Tiendrébéogo, J., Compaoré, G., Ouédraogo, M. H., Nanema, K. R. & Bationo-Kando, P. (2023). Heritability, genetic advance, and correlation studies of morpho-agronomic traits and brix in Burkina Faso sweet stalk sorghum genotypes. Journal of Applied Biology and Biotechnology, 11(4), 50-57. DOI: 10.7324/JABB.2023.110325. Terfa, G. N. & Gurmu, G. N. (2020). Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L.) genotypes for seed yield and other agronomic traits. Oil Crop Science, 5, 156–160. DOI: https://doi.org/10.1016/j.ocsci.2020.08.002. Thapa, R. S., Sharma, K. P., Pratap, Dh., Singh, T. & Kumar, A. (2019). Assessment of genetic variability, heritability and genetic advance in wheat (Triticum aestivum L.) genotypes under normal and heat stress environment. Indian Journal of Agricultural Research, 53(1), 51-56. DOI: https://doi.org/10.18805/IJARe.A-5095. Wolde, T., Eticha, F., Alamerew, S., Assefa, E. & Dutamo, D. (2016). Genetic variability, heritability and genetic advance for yield and yield related traits in Durum wheat (Triticum durum L.) accessions. Sky Journal of Agricultural Research, 5(3), 42–47. Würschum, T., Leiser, W. L., Kazman, E. & Longin, C. F. H. (2016). Genetic control of protein content and sedimentation volume in European winter wheat cultivars. Theoretical and Applied Genetics, 129(9), 1685-1696. DOI: 10.1007/s00122-016-2732-0.
|
|
| Date published: 2023-12-15
Download full text