Fusarium species producers of trichothecenes in wheat characteristics and control Review
Daniela Stoeva, Deyana Gencheva, Rozalina Yordanova, Georgi Beev
Abstract: Wheat is a major cereal crop culture, with highest part of global production and consumption. It represents a favorable substrate for the development of numerous fungal pathogens, of which the members of the genus Fusarium are of great importance. Fusarium spp. causes a variety of diseases affecting cereal crops in wheat manifested in two forms - Fusarium root and stem rot and Fusarium head blight (FHB) when it occurs at a later stage. Apart from the fact that these infections dramatically reduce the yields and the quality of the grain, there is a risk of secondary Fusarium metabolites known as mycotoxins entering the production. Among them, the trichothecenes deoxynivalenol (DON), nivalenol (NIV), T-2, HT-2 toxin are of greate concern. These secondary metabolites can accumulate in high concentrations in the rain and enter the food chain, causing various diseases in both humans and animals. The production of mycotoxins is not only species-specific but also strain-specific characteristic. Therefore, the knowledge of the pattern of Fusarium species spread on the wheat, will allow accurate prediction and early management of the potential presence of mycotoxins in food and feed.
Keywords: Fusarium; Fusarium infections; Fusarium mycotoxins; Fusarium species identification; wheat
Citation: Stoeva, D., Gencheva, D., Yordanova, R. & Beev, G. (2023). Fusarium species producers of trichothecenes in wheat – characteristics and control – Review. Bulg. J. Agric. Sci., 29(6), 1103–1111.
References: (click to open/close) | Al-Hatmi, A. M., Meis, J. F. & de Hoog, G. S. (2016). Fusarium: molecular diversity and intrinsic drug resistance. PLoS pathogens, 12(4), e1005464. Arif, M., Chawla, S., Zaidi, M. W., Rayar, J. K., Variar, M. & Singh, U. S. (2012). Development of specific primers for genus Fusarium and F. solani using rDNA sub-unit and transcription elongation factor (TEF-1α) gene. African Journal of Biotechnology, 11(2), 444-447. Arrua Alvarenga, A. A., Iehisa Ouchi, J. C. M., Cazal Martínez, C. C., Moura Mendes, J., Colmán, A. A., Fernández Ríos, D., ... & Ramírez, M. L. (2022). Trichothecene Genotype Profiling of Wheat Fusarium graminearum Species Complex in Paraguay. Toxins 2022, 14, 257. Babadoost, M. (2018). Fusarium: Historical and continued importance. Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. Beccari, G., Colasante, V., Tini, F., Senatore, M. T., Prodi, A., Sulyok, M. & Covarelli, L. (2018). Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites. Food microbiology, 70, 17-27. Beccari, G., Colasante, V., Tini, F., Senatore, M. T., Prodi, A., Sulyok, M. & Covarelli, L. (2018). Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites. Food microbiology, 70, 17-27. Beev, G., Denev, S. & Pavlov, D. (2011). Occurrence and distribution of Fusarium species in wheat grain. Agricultural science and technology, 3(2), 165-168. Beev, G., Denev, S. & Bakalova, D. (2013). Zearalenone-producing activity of Fusarium graminearum and Fusarium oxysporum isolated from Bulgarian wheat. Bulgarian Journal of Agricultural Science, 19(2), 255-259. Berthiller, F., Crews, C., Dall'Asta, C., Saeger, S. D., Haesaert, G., Karlovsky, P., ... & Stroka, J. (2013). Masked mycotoxins: A review. Molecular nutrition & foodresearch, 57(1), 165-186. Beyer, M., Pogoda, F., Pallez, M., Lazic, J., Hoffmann, L. & Pasquali, M. (2014). Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium head blight pathogens isolated from symptomatic wheat heads. International Journal of Food Microbiology, 182, 51-56. Bilska, K., Jurczak, S., Kulik, T., Ropelewska, E., Olszewski, J., Żelechowski, M., & Zapotoczny, P. (2018). Species composition and trichothecene genotype profiling of Fusarium field isolates recovered from wheat in Poland. Toxins, 10(8), 325. Bottalico, A. & Perrone, G. (2002). Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Mycotoxins in Plant Disease: Under the aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998-2003’, EU project (QLK 1-CT-1998-01380), and ISPP ‘Fusarium Committee’, 611-624. Chandra, N. S., Wulff, E. G., Udayashankar, A. C., Nandini, B. P., Niranjana, S. R., Mortensen, C. N. & Prakash, H. S. (2011). Prospects of molecular markers in Fusarium species diversity. Applied microbiology and biotechnology, 90, 1625-1639. Corrêa, J. A. F., Orso, P. B., Bordin, K., Hara, R. V. & Luciano, F. B. (2018). Toxicological effects of fumonisin B1 in combination with other Fusarium toxins. Food and Chemical Toxicology, 121, 483-494. Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H. J., Chaverri, P., ... & Thines, M. (2021). Fusarium: more than a node or a foot-shaped basal cell. Studies in mycology, 98, 100116. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., ... & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13(4), 414-430. Desjardins, A. E. & Hohn, T. M. (1997). Mycotoxins in plant pathogenesis. Molecular Plant-Microbe Interactions, 10(2), 147-152. DSM World Mycotoxin survey data, (2022), (https://www.biomin.net/solutions/mycotoxin-survey). Ec. (2013). Commission Recommendation 2013/165/EU of 27 March 2013 on the presence of T‐2 and HT‐2 toxin in cereals and cereal products. Official Journal of the European Union OJ L, 91, 12-15. Edwards, S. G. (2009). Fusarium mycotoxin content of UK organic and conventional oats. Food Additives and Contaminants, 26(7), 1063-1069. Ejaz, M. R., Jaoua, S., Ahmadi, M. & Shabani, F. (2023). An examination of how climate change could affect the future spread of Fusarium spp. around the world, using correlative models to model the changes. Environmental Technology & Innovation, 31, 103177. European Commission, E. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union, 364, 5-24. European Commission, E. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union, 364, 5-24. FAO (2020). https://www.fao.org/faostat/en/#data/QCL, / (accessed on 20 July2023). FAO (2022). Food and Agriculture Organization of the UN. World Food Situation. Available online: https://www. fao.org/worldfoodsituation/csdb/en/ (accessed on 20 July2023). Ferrigo, D., Raiola, A. & Causin, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5), 627. Gagkaeva, T., Orina, A. & Gavrilova, O. (2021). Fusarium head blight in the Russian Far East: 140 years after description of the ‘drunken bread’problem. PeerJ, 9, e12346. Gerlach, W., Nirenberg, H., Eckart, I., Rummland, I. & Schwarz, R. (1982). The genus Fusarium: a pictorial atlas, 209, 1-406. Berlin: Kommissionsverlag P. Parey. Gencheva, D. & Beev, G. (2020). Molecular identification of Fusarium spp. isolated from wheat based on sequencing of internal transcribed spacer (ITS) region. Häggblom, P. & Nordkvist, E. (2015). Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. Mycotoxin research, 31, 101-107. https://food.ec.europa.eu/safety/rasff_en. Imane, B., Hannane, A., Amor, B. & Noureddine, R. (2022). Fusarium species associated with wheat head blight disease in Algeria: characterization and effects of triazole fungicides. Pesticides and Phytomedicine/Pesticidi i fitomedicina, 37(2), 49-62. Johns, L. E., Bebber, D. P., Gurr, S. J. & Brown, N. A. (2022). Emerging health threat and cost of Fusarium mycotoxins in European wheat. Nature Food, 3(12), 1014-1019. Kazan, K., Gardiner, D. M. & Manners, J. M. (2012). On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular plant pathology, 13(4), 399-413. Kelly, A. C., Clear, R. M., O’Donnell, K., McCormick, S., Turkington, T. K., Tekauz, A., ... & Ward, T. J. (2015). Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal genetics and biology, 82, 22-31. Ko Ko, T. W., Stephenson, S. L., Bahkali, A. H. & Hyde, K. D. (2011). From morphology to molecular biology: can we use sequence data to identify fungal endophytes?. Fungal Diversity, 50, 113-120. Kolf-Clauw, M., Sassahara, M., Lucioli, J., Rubira-Gerez, J., Alassane-Kpembi, I., Lyazhri, F., ... & Oswald, I. P. (2013). The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Archives of toxicology, 87, 2233-2241. Kulik, T. (2011). Development of TaqMan assays for 3ADON, 15ADON and NIV Fusarium genotypes based on Tri12 gene. Cereal Research Communications, 39(2), 200-214 Laraba, I., Boureghda, H., Abdallah, N., Bouaicha, O., Obanor, F., Moretti, A., ... & O'Donnell, K. (2017). Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria. Fungal Genetics and Biology, 103, 34-41. Lazarus, C. M., Williams, K. & Bailey, A. M. (2014). Reconstructing fungal natural product biosynthetic pathways. Natural product reports, 31(10), 1339-1347. Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. & Lee, Y. W. (2002). Tri13 and Tri7 determine deoxynivalenol-and nivalenol-producing chemotypes of Gibberella zeae. Applied and environmental microbiology, 68(5), 2148-2154. Leslie, J. F. & Summerell, B. A. (2008). The Fusarium laboratory manual. John Wiley & Sons. Liddell, C. M. (2003). Systematics of Fusarium species and allies associated with Fusarium head blight. Fusarium head blight of wheat and barley, 35-43. Liew, W. P. P. & Mohd-Redzwan, S. (2018). Mycotoxin: Its impact on gut health and microbiota. Frontiers in cellular and infection microbiology, 8, 60. Logrieco, A. F. & Moretti, A. (2008). Between emerging and historical problems: an overview of the main toxigenic fungi and mycotoxin concerns in Europe. Mycotoxins: detection methods, management, public health and agricultural trade, 139-153. Majeed, M., Khaneghah, A. M., Kadmi, Y., Khan, M. U. & Shariati, M. A. (2018). Assessment of ochratoxin A in commercial corn and wheat products. Current Nutrition & Food Science, 14(2), 116-120. Maresca, M., Mahfoud, R., Garmy, N. & Fantini, J. (2002). The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. The Journal of nutrition, 132(9), 2723-2731. McCormick, S. P., Alexander, N. J. & Proctor, R. H. (2006). Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Canadian journal of microbiology, 52(3), 220-226. Medema, M. H., Cimermancic, P., Sali, A., Takano, E. & Fischbach, M. A. (2014). A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS computational biology, 10(12), e1004016. Miedaner, T., Cumagun, C. J. R. & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156(3), 129-139. Moretti, A., Pascale, M. & Logrieco, A. F. (2019). Mycotoxin risks under a climate change scenario in Europe. Trends in food science & technology, 84, 38-40. Nathanail, A. V., Varga, E., Meng-Reiterer, J., Bueschl, C., Michlmayr, H., Malachova, A., ... & Berthiller, F. (2015). Metabolism of the Fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. Journal of agricultural and food chemistry, 63(35), 7862-7872. Nathanail, A. V., Varga, E., Meng-Reiterer, J., Bueschl, C., Michlmayr, H., Malachova, A., ... & Berthiller, F. (2015). Metabolism of the Fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. Journal of agricultural and food chemistry, 63(35), 7862-7872. Navale, V. D., Sawant, A. M., & Vamkudoth, K. R. (2023). Genetic diversity of toxigenic Fusarium verticillioides associated with maize grains, India. Genetics and Molecular Biology, 46, e20220073. Nelson, P. E. (1983). Fusarium species. An illustrated manual for identification. Nielsen, L. K., Jensen, J. D., Rodríguez, A., Jørgensen, L. N. & Justesen, A. F. (2012). TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. International Journal of Food Microbiology, 157(3), 384-392. Pancosma SA. Pancosma & Associates’ 2015 survey: Threat of multi‐mycotoxin contamination. 2015. Available from: http://en.engormix.com/MA‐mycotoxins/articles/pancosma‐associates‐2015‐survey‐t3648/p0.htm (Accessed: 20.07.2023). Pleadin, J., Vulić, A., Babić, J. & Šubarić, D. (2018). The incidence of T-2 and HT-2 toxins in cereals and methods of their reduction practice by the food industry. Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers, 41-64. Polak-Śliwińska, M. & Paszczyk, B. (2021). Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review. Molecules, 26(2), 454. Rapid Alert System for Food and Feed (RASFF),https://food.ec.europa.eu/safety/rasff_enhttps://food.ec.europa.eu/safety/rasff_en. Rauwane, M. E., Ogugua, U. V., Kalu, C. M., Ledwaba, L. K., Woldesemayat, A. A. & Ntushelo, K. (2020). Pathogenicity and virulence factors of Fusarium graminearum including factors discovered using next generation sequencing technologies and proteomics. Microorganisms, 8(2), 305. Refai, M., Hassan, A. & Hamed, M. (2015). Monograph on the genus Fusarium. Monograph on the genus Fusarium. Regulation, C. (2007). No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards. Search in. Stenglein, S. A. (2009). Fusarium poae: a pathogen that needs more attention. Journal of Plant Pathology, 25-36. Stępień, Ł. & Chełkowski, J. (2010). Fusarium head blight of wheat: pathogenic species and their mycotoxins. World Mycotoxin Journal, 3(2), 107-119. Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., ... & Hyakumachi, M. (2008). Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology, 98(2), 159-166. Tittlemier, S. A., Roscoe, M., Trelka, R., Gaba, D., Chan, J. M., Patrick, S. K., ... & Gräfenhan, T. (2013). Fusarium damage in small cereal grains from Western Canada. 2. Occurrence of Fusarium toxins and their source organisms in durum wheat harvested in 2010. Journal of agricultural and food chemistry, 61(23), 5438-5448. Valcheva, A. (2003). Distribution of Zearalenon and Deoxinivalenol and their producers from genus Fusarium as natural contaminators of wheat and maize. Animal Science, 3(4), 163-166. Van der Fels-Klerx, H. & Stratakou, I. (2010). T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: Occurrence, factors affecting occurrence, co-occurrence and toxicological effects. World Mycotoxin Journal, 3(4), 349-367. van der Lee, T., Zhang, H., van Diepeningen, A. & Waalwijk, C. (2015). Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Additives & Contaminants: Part A, 32(4), 453-460. Vanara, F., Scarpino, V. & Blandino, M. (2018). Fumonisin distribution in maize dry-milling products and by-products: Impact of two industrial degermination systems. Toxins, 10(9), 357. Vrabcheva, T. & Vrabchev, N. (1997). Fusarium and deoxynivalenol contamination of wheat grown in various regions of Bulgaria. Cereal Research Communications, 25, 395-396. Walkowiak, S., Bonner, C. T., Wang, L., Blackwell, B., Rowland, O. & Subramaniam, R. (2015). Intraspecies interaction of Fusarium graminearum contributes to reduced toxin production and virulence. Molecular plant-microbe interactions, 28(11), 1256-1267. World Health Organization, & International Agency for Research on Cancer. (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 56.
|
|
| Date published: 2023-12-15
Download full text