Mutagenesis as tool for enhancement of fatty acid composition of rapeseed (Brassica napus L.)
Marina Marcheva, Mariana Petkova, Stefka Atanassova
Abstract: Stable genetic improvement of the fatty acid composition of rapeseed (Brassica napus L.) was a prerequisite for promoting and expanding its industrial applications. Irradiation with 10 and 15 krad gamma rays 60Co of seeds of two registered varieties – Trabant and Abacus provoke genetic and biochemical changes in the mutant generations of rapeseed. The induced mutants were reproduced for three years and compared with control plants in the experimental field of Agricultural University–Plovdiv. Each mutant was isolated and self-fertilized. Biometric characteristics were described for thirty plants in three replicate each year and variant. The initial genotypes responded to the irradiation with various changes in the plant height, branching, number of siliques per plant, seeds per silique and seed weight per plant. The quality and quantity of fatty acids content were screened by gas chromatography mas spectrometry (GC/MS) and near-infrared reflectance spectroscopy (NIRS). Spectral data were analyzed by principal component analysis (PCA) and partial least square regression (PLS) was used for quantitative analysis. The biochemical analyses of the mutants showed lower content of mono-unsaturated fatty acids as oleic acids and higher content of polyunsaturated fatty acids as linoleic (C18:2) and linolenic acids (C18:3). The changes in the fatty acids’ composition correlate with a lower plant height and better branching of the plants. Irradiation with 100 Gy led to the creation of mutants with larger seeds and higher production potential per plant. The mutants could be used for further plant breeding procedures for enhancing the productivity and quality of rapeseed oil as a valuable source for multiple industrial and food purposes.
Keywords: Brassica napus; fatty acid; gas chromatography; mutagenesis; NIRS; rapeseed
Citation: Marcheva, M., Petkova, M. & Atanassova, S. (2023). Mutagenesis as tool for enhancement of fatty acid composition of rapeseed (Brassica napus L.). Bulg. J. Agric. Sci., 29(6), 1079–1089.
References: (click to open/close) | AbdElsalam, A. E., Attaya, A. S., Mekki, B. E. & ElSarag, E. I. (2017). Assessment of genetic diversity of some canola genotypes. Sinai Journal of Applied Sciences, 6(3), 241-248. DOI: 10.21608/SINJAS.2017.78829. Atanasova, S., Helyaskova, Z. & Todorova, T. (2007). Analysis of the chemical composition of pea and tare grains and straw by near-infrared spectroscopy. Journal of Animal Science. Bommarco, R., Marini, L. & Vaissiere, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169(4), 1025–1032. Das, M. L., Rahman, A. & Malek, M. A. (1999). Two early maturing and high yielding rapeseed varieties developed through induced mutation. Bangladesh Journal of Botany, 28(1), 27-33. DellaPenna, D. (2001). Plant Metabolic Engineering. Plant Physiol., 125, 160-163. DOI: 10.1104/pp.125.1.160. Du, Q., Zhu, M., Shi, T., Luo, X., Gan, B., Tang, L. & Chen, Y. (2021). Adulteration detection of corn oil, rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and. Food Control, 121, 107577. Eifler, J., Wick, J. E., Steingrobe, B. & Möllers, C. (2021). Genetic variation of seed phosphorus concentration in winter oilseed rape and development of a NIRS calibration. Euphytica, 217(4), 1-10. Eskin, N. A M., McDonald, B. E, Przybylski, R., Malcolmson, L. J., Scarth, R., Mag, T., Ward, K. & Adolph, D. (1996). Canola oil. 1–96. In Edible oil and fat products: Oil and oil seeds edited by Y. H. Hui, John Wiley & Sons Inc., New York. Friedt, W. & Luhhs, W. W. (1999). Breeding of rapeseed (Brassica napus L) for modified seed quality – synergy of conventional and modern approaches. In Proc. 10th Int. Rapeseed Cong.: New horizons for an old crop, Canberra, Australia. Available at http://www.regional.org.au/au/gcirc/4/440.htm. Guo, T., Dai, L., Yan, B., Lan, G., Li, F., Li, F., Pan, F. & Wang, F. (2021). Measurements of Chemical Compositions in Corn Stover and Wheat Straw by Near-Infrared Reflectance Spectroscopy. Animals (Basel)., 11(11), 3328. doi: 10.3390/ani11113328. Havlíčková, L., Jozova, E., Rychla, A., Klima, M., Kučera, V. & Čurn, V. (2014). Genetic diversity assessment in winter oilseed rape (Brassica napus L.) collection using AFLP, ISSR, and SSR markers. Czech Journal of Genetics and Plant Breeding, 50(3), 216-225. https://doi.org/10.17221/220/2013-CJGPB. Hitz, W., Yadav. N., Reiter, R., Mauvais, C. & Kinney A. (1995). In Plant Lipid Metabolism. Edited by J. C. Kader, P. Mazliak Kluwer. Academic Publishers, London, 506-508. DOI: 10.5772/ intechopen.81355. Hom, N. H., Becker, H. C. & Möllers, C. (2007). Non-destructive analysis of rapeseed quality by NIRS of small seed samples and single seeds. Euphytica, 153(1), 27-34. Javed, M. A., Siddiqui, M. A., Khan, M. K. R., Khatri, A., Khan, I. A., Dahar, N. A., Khanzada, M. H. & Khan, R. (2003). Development of High Yielding Mutants of Brassica campestris L. cv. Toria Selection Through Gamma Rays Irradiation. Asian Journal of Plant Sciences, 2(2), 192-195. Li, N., Song, D., Peng, W., Zhan, J., Shi, J., Wang, X., Liu, G. & Wang, H. (2019). Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant biotechnology journal, 17(4), 736–749. https://doi.org/10.1111/pbi.13011. Nagaoka, T. & Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and applied genetics, 94, 597-602. https://doi.org/10.1007/ s001220050456. Niewitetzki, O., Tillmann, P., Becker, H. & Möllers, C. A (2010). New near-infrared reflectance spectroscopy method for high-throughput analysis of oleic acid and linolenic acid content of single seeds in oilseed rape (Brassica napus L.). Journal of agricultural and food chemistry, 58(1), 94-100. DOI:10.1021/ jf9028199. Rahimi, M. M. & Bahrani, A. (2011). Effect of gamma irradiation on qualitative and quantitative characteristics of canola (Brassica napus L.). Middle-East Journal of Scientific Research, 8(2), 519-525. Sato, T., Uezono, I., Morishita, T. & Tetsuka, T. (1998). Nondestructive estimation of fatty acid composition in seeds of Brassica napus L. by near‐infrared spectroscopy. Journal of the American Oil Chemists’ Society, 75(12), 1877-1881. Schierholt, A, Becker, H. C. & Ecke, W. (2000). Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). TAG Teor. App. Biol., TAG Theoretical and Applied Genetics, 101(5-6), 897-901. https://doi.org/10.1007/s001220051559. Shah, S.A., Ali, I. & Rahman, K. (1990). Induction and selection of superior genetic variables of oilseed rape, Brassica napus L. The Nucleus, 7, 37- 40. Siddiqui, M. A., Khan, I. A. & Khatri, A. (2009). Induced quantitative variability by gamma rays and ethylmethane sulphonate alone and in combination in rapeseed (Brassica napus L.). Pak J Bot., 41(3), 1189-1195. Sorour, W. A. I. (1998). Levels of compatibility and breeding behavior of beneficial mutants from irradiated oilseed rape. Bulletin of Faculty of Agriculture, University of Cairo, 49(3), 345-354. Statsoft. Inc. (2004). STATISTICA (data analysis software system) Version 7.0. www.statsoft.com Velasco, L. & Becker, H. C. (1998). Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica, 101, 221–230. https://doi.org/10.1023/A:1018358707847. Velasco, L., Fernandez, J. M. & de Haro, A. (1997). Determination of the fatty acid composition of the oil in intactseed mustard by near-infrared reflectance spectroscopy. J. Am. Oil Chem. Soc., 74, 1595–1602. DOI:10.1007/S11746-997-0083-3. Velasco, L. & Möllers, C. (2002). Nondestructive assessment of protein content in single seeds of rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica, 123(1), 89-93. https://doi.org/10.1023/A:1014452700465. Velasco, L., Mollers, C. & Becker, H. C. (1999). Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed (Brassica napus L.) by near infrared reflectance spectroscopy. Euphytica, 106, 79–85. https://doi.org/10.1023/A:1003592115110. Wan, L. S., Zhang, G., Zhang, J. F., Yan, G. H., Zhu, M., Ni, Z. B., Zhu, G. Y., Wang, A. M., Dai, J. Y., Sun, H. Q. & Sun, M. F. (2018). Models of near infrared spectroscopy of fatty acid contents in rapeseed. Journal of Food Process Engineering, 41(8), e12876. Weselake, R. J., S. Shah, M., Tang, P., Quant, A., Snyder, C. L., Furukawa-Stoffer, T. L. & Harwood, J. L. (2008). Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus L) to increase seed oil content. Journal of experimental botany, 59 (13), 3543-3549. doi: 10.1093/jxb/ern206. Williams, I. H, Martin, A. P. & White, R. P. (1986). The pollination requirements of oil-seed rape (Brassica napus L.). J. Agric. Sci., 106(1), 27–30. Zlatanov, M. D., Angelova-Romova, M., Antova, G., Dimitrova, R. D., Momchilova, S. & Nikolova-Damyanova, B. (2009). Variations in Fatty Acids, Phospholipids and sterols during the seed development of a high oleic sunflower variety. J. Am. Oil Chem. Soc., 86, 867–875. DOI: 10.1007/s11746-009-1425. |
|
| Date published: 2023-12-15
Download full text