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Abstract

Krezhova, D., B. Dikova and S. Maneva, 2014. Ground based hyperspectral remote sensing for disease 
detection of tobacco plants. Bulg. J. Agric. Sci., 20: 1142-1150

Greenhouse experiment was conducted in the Institute “N. Poushkarov”, Department Plant Protection Kostinbrod, with 
young tobacco plants infected with TSWV (Tomato Spotted Wilt Virus). Remote sensing technique, spectral reflectance, was 
applied for detecting and assessing the development of the viral infection. At growth stage 4-6 expanded leaf some of the 
plants were inoculated with TSWV by using infected material from a pepper fruit with severe symptoms of yellow spotting. 
Hyperspectral reflectance data of healthy (control) and infected leaves was collected by a portable fibre-optics spectrometer in 
the visible and near-infrared spectral ranges. The measurements were conducted on the 14th and 20th days after the inoculation. 
Spectral reflectance analyses were performed in green, red, red edge, and NIR regions. The differences between the reflect-
ance spectra of control and infected leaves were assessed by means of the Student’s t-criterion at ten selected wavelengths and 
first derivative analysis. The viral concentration in the leaves was determined by the serological method DAS-ELISA. On the 
14th day no visual changes in some of the infected leaves occurred but the differences of averaged reflectance spectra against 
the control were statistically significant at four of the investigated wavelengths and the presence of TSWV was established, i.e. 
the latent infection has been occurred. Reflectance spectra of the other leaves differed statistically significantly at eight wave-
lengths. On the 20th day the statistical analysis indicates an increase of the number of statistically significant differences and 
the shift of the red edge position, i.e. the infection is deepening that is in agreement with serological analyses. 
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Introduction

Monitoring and plant health assessment have an important 
role in controlling diseases in agricultural crops which can 
result in yield loss, poor quality and economic loss (Everett 
et al., 1999). The bacterial, fungal, and viral infections, along 
with infestations by insects result in plant diseases and dam-
age. Upon infection, a plant develops symptoms that appear 
on different parts of the plants causing a significant agro-
nomic impact (López et al., 2003). The contemporary prac-
tices for struggle with the plant disease infestations mainly 
consist of indiscriminately spraying with agrochemicals over 

the field which is an expensive and time consuming process 
(Apan et al., 2005; Sankarana et al., 2010). Here is to note that 
conventional sprayings with pesticides are in limited use in 
the control of viral diseases owing to the peculiarities of viral 
pathogens. To minimize economic loss and to reduce envi-
ronmental pollution, it is necessary accurately to assess the 
disease of the crops so that the effective control measures to 
be applied timely to the infected plants. Until recently, dam-
age evaluation of diseases has been largely done by visual in-
spections (Moshou et al., 2004). But with the advancement of 
the technology in agriculture sector, the remote sensing tech-
niques have been used to monitor disease epidemics in ag-
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ricultural crops (Moshou et al., 2005; Delalieux et al., 2007; 
Yang et al., 2009).

Remote sensing applications in agriculture began over the 
past 25 years with sensors for soil organic matter, and have 
quickly diversified to include satellite, aerial, and hand held 
or tractor mounted sensors (Mulla, 2013). Many of the ear-
lier studies focused on broad spectral bands such as the vis-
ible (VIS) and near-infrared (NIR) spectral ranges (350 nm to 
1300 nm), which could be used in vegetation studies (Carter, 
1993; Panuelas and Filella, 1998). With the development of 
hyperspectral remote sensing technologies, researchers have 
benefited from significant improvements in the spectral and 
spatial properties of the data, allowing for more detailed plant 
and environmental studies (West et al., 2003; Lee et al., 2010). 
Today, electromagnetic wavelengths in use are ranging from 
the ultraviolet to microwave portions of the spectrum (350 
nm to 2500 nm). The data obtained are in many hundreds of 
contiguous spectral bands, and this allows improved analysis 
of specific compounds, molecular interactions, crop stress, 
and biophysical or biochemical characteristics related to plant 
status (Muhammed, 2005; Naidu et al., 2009; Krezhova et 
al., 2012). Moreover, the high spatial and spectral resolution 
of hyperspectral technology increases the potential to detect 
anomalies in the normal plant production processes at an ear-
ly stage, before the damage occurs (Panda et al., 2010; Lee et 
al., 2010). This possibility has lately driven most researches 
in the field of vegetation stress and disease detection (Bravo 
et al., 2003; Delalieux et al., 2007; Krezhova et al., 2005).

Vegetation behavior depends on the nature of the vegeta-
tion itself, its interactions with solar radiation and other cli-
mate factors, and the availability of chemical nutrients and 
water within the host medium, usually soil or water in marine 
environments. In recent years, there has been an expanding 
body of literature concerning the relationship between the 
spectral reflectance properties of vegetation and the struc-
tural characteristics of vegetation and pigment concentration 
in leaves (Sims and Gamon, 2002; Panda et al., 2010). The 
spectral characteristics of vegetation are governed primarily 
by scattering and absorption characteristics of the leaf inter-
nal structure and biochemical constituents, such as pigments, 
water, nitrogen, cellulose and lignin (Datt, 1998; Coops et 
al., 2002; Nielsen and Simonsen, 2011). Foliar pigments are 
the main determinants controlling the spectral responses of 
leaves in the VIS part of the spectrum (Zarco-Tejada et al., 
2000; Coops et al., 2003). Figure 1 (Sanderson, 2007) shows a 
typical reflectance curve of green vegetation and main factors 
controlling leaf reflectance. Reflected radiation is low in VIS 
due to the strong absorption of chlorophylls and carotenoids. 
In particular, leaf chlorophyll content is a major factor that 
dictates the amount of reflected energy and is directly associ-

ated with photosynthetic capacity and productivity (Gauss-
man, 1977; Curran et al., 1992). In the NIR and short wave 
infrared (SWIR) regions the reflectance is influenced by the 
amount of standing biomass and cellular structure, whereas 
leaf and canopy water content is responsible for the absorp-
tion wells that characterize the SWIR (Jensen, 2007; Panda 
et al., 2010).

Vegetation stress is a result of complex physiological 
processes. Stress symptoms show up as photosynthesis de-
cline. With the persistence of the stress (i.e. pollution, wa-
ter deficiency, high temperature), stress induced mechanisms 
become dominant and give rise to acute or chronic injury 
(damage phase), depending on the stress tolerance threshold 
(Ustin et al., 2004). The plant response to stress implies bio-
chemical and morphological changes during this phase that is 
therefore irreversible. In stressed vegetation, leaf chlorophyll 
content decreases, thereby changing the proportion of light-
absorbing pigments, leading to a reduction in the overall ab-
sorption of light (Murtha, 1982; Zarco-Tejada et al., 2000). 
These changes affect the spectral behavior of plants through 
a reduction in green reflection and an increase in red and blue 
reflections, resulting in changes in the normal spectral reflec-
tance patterns of plants (Zarco-Tejada et al., 2000; Krezho-
va, 2011). More recent work has highlighted the importance 
of more specific narrow-band regions such as the red edge 
(maximum slope of vegetation reflectance from 680 nm to 
720 nm) for predicting plant stress (Pu et al., 2003; Clay et al., 
2006; Campbell et al., 2007).

Tomato spotted wilt virus is one of the most wide-spread 
and damaging viruses affecting vegetable crops. Tospovirus-
es similar or identical to TSWV are recognized as infecting 
more than 1000 monocot and dicot species worldwide (Pe-
ters, 1998). Some show symptoms and some do not. TSWV 

Fig. 1. Dominant factors controlling leaf reflectance
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causes significant damage to solanaceous vegetables such as 
tomatoes, potatoes and peppers, but also to lettuce and a wide 
range of herbs and ornamental, most often dahlias and chry-
santhemums. Cucumber infections are symptomless. Plant 
resistance and various strategies that reduce viral transmis-
sion from plant to plant are the only effective methods of con-
trolling tospoviruses (Roberts and Pernezny, 2003; Momol 
et al., 2005).

In the present paper the advanced remote sensing tech-
nique, hyperspectral reflectance, was applied for detection of 
viral infection at young tobacco plants infected with TSWV. 
The possibility of using hyperspectral data as a tool for early 
or pre-visual detection of the disease and for discriminating 
the degree of the leaf infection was investigated. The early 
detection of plant diseases (before the onset of disease symp-
toms) could be a valuable source of information for execut-
ing proper management strategies to prevent the development 
and the spread of diseases.

Materials and Methods

Plant material and inoculation
As a model system we used young tobacco plants (Nico-

tiana tabacum L.), cultivar Samsun NN, grown in a green-
house under controlled conditions (22-25°C, humidity 75-
85%, photoperiod of 16/8 h, light intensity 3000–4000 lux). 
At growth stage 4-6 expanded leaf some of the plants were 
inoculated with TSWV. Infected material from diseased pep-
per fruit with severe symptoms of yellow spotting was used. 
One gram of infected pepper tissue was homogenized in 2 
ml 4°C 0.1М Potassium-sodium buffer, рН 7.0, with 0.2% 
Na2SO3 and 0.2% Ascorbic acid. A part of the plants was not 
inoculated (control).

TSWV causes a wide variety of symptoms including wilt-
ing, stem death, stunting, yellowing, poor flowering, and 
sunken spots, etches, or ring spots on leaves. These spots lat-
er turn brown, followed by a general browning of leaves that 
die and appear drooped on stems. Plant are often stunted, and 
with the droopy leaves, give one the impression that they are 
wilted. Green fruit show concentric rings of yellow or brown 
alternating with the background green color, and striking 
brown rings occur on red-ripe fruit (Momol et al., 2004). One 
of the investigated tobacco leaves on the 20th day after the 
inoculation is shown in Figure 2.

Hyperspectral reflectance 
Recent developments in technologies in agricultural sec-

tor lead to a demand for non-destructive methods of plant dis-
ease detection. It is desirable that the plant disease detection 
tool should be rapid, specific to a particular disease, and sen-

sitive for detection at the early onset of the symptoms (Lòpez 
et al., 2003). The spectrometric techniques are unique dis-
ease monitoring methods that are used to detect diseases and 
stress caused by various factors in plants.

Remote sensing method, hyperspectral reflectance, was 
applied to monitoring and plant disease detection and assess-
ment. Terrestrial materials reflect and absorb the light differ-
ently at the wavelengths. Therefore, it is possible to differen-
tiate among materials (vegetation, soils, rocks, etc.) by their 
spectral signatures, the measured reflected electromagnetic 
radiation at varying wavelengths. Green vegetation species 
all have unique spectral features, mainly because of the chlo-
rophylls and carotenoids, and other pigments and water con-
tent. The spectral reflectance is a function described by the 
dependence of the ratios of the intensity of reflected light to 
the illuminated light on wavelengths in VIS (400-700 nm), 
NIR (700-1200 nm), and SWIR (1200-2500 nm) spectral 
ranges, (Figure 1). Chlorophyll strongly absorbs radiation in 
the red and blue regions but reflects in the green range. The 
internal structure of healthy leaves acts as excellent diffuse 
reflector in NIR. Measuring and monitoring the NIR reflec-
tance is one way that scientists can determine how healthy (or 
unhealthy) vegetation may be.

Acquisition of data  
Hyperspectral reflectance data were collected from 

fresh detached leaves by a portable fibre-optic spectrometer 
USB2000 (Ocean Optics, USA) in the VIS and NIR spectral 
ranges (450-850 nm) at a spectral resolution (halfwidth) of 
1.5 nm and step band 0.3 nm in 1170 spectral wavebands. The 
measurements were carried out using an experimental setup 
in laboratory. The light source is a halogen lamp providing 

Fig. 2. TSWV symptoms on tobacco leaf on the 20th day 
after the inoculation
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homogeneous illumination of the leaf surface. The spectral 
reflectance characteristics (SRC) of the investigated plants 
were determined as the ratio between the reflected from the 
leaves radiation and those one reflected from the diffuse re-
flectance standard. Specialized software was used for data 
acquisition and processing. 

DAS-ELISA testing
In last decade molecular techniques of plant disease de-

tection have been well established. The sensitivity of the mo-
lecular techniques refers to the minimum amount of micro-
organism that can be detected in the sample. The commonly 
used techniques for disease detection are ELISA (Enzyme-
linked immunosorbent assay) and PCR (polymerase chain 
reaction), PCR and real-time PCR. In the ELISA-based dis-
ease detection (Clark and Adams, 1977), the microbial pro-
tein (antigen) associated with a plant disease is injected into 
an animal that produces antibodies against the antigen. These 
antibodies are extracted from the animal’s body and used for 
antigen detection with a fluorescence dye and enzymes. 

To identify the presence or absence of TSWV within the 
leaf tissue of tobacco plants, cultivar Samsun NN, DAS-ELI-
SA (double antibody sandwich enzyme-linked immunosor-
bent assay) testing was performed. For the analysis a com-
mercial kit (LOEWE Biochemica GmbH, Sauerlach, Germa-
ny) with polyclonal IgG, specific for TSWV were used. After 
the substrate reaction was allowed to proceed for 30 min at 
room temperature, absorbance values were determined by a 
spectrophotometer SUMAL PE (Karl Zeiss, Jena, Germany) 
at a wavelength of 405 nm (A405). Samples that gave DAS-
ELISA values of greater than two and half times the mean 
of control (healthy plants) were considered to be positive or 
virus carriers. The A405 values were corrected by subtracting 
the mean of the buffer control absorbance values from sample 
values. The positive control was infected with TSWV indica-
tor plants (pepper fruit with symptoms of chlorotic concen-
tric ring spots). The absorbance values from all ELISA tests 
were plotted on histograms.

Data analysis
Ten bands at key wavelengths were selected to relate phys-

iological status of the plants (chlorophyll content, cell struc-
ture, water content) to leaf reflectance based on our investi-
gations of plant stress during the last years (Krezhova and 
Kirova, 2011; Krezhova, 2011). The bands were located in 
four spectral ranges: green (520-580 nm, maximal reflectivity 
of green vegetation), red (640-680nm, maximal chlorophyll 
absorption), red edge (680-720 nm, maximal slope of the 
reflectance spectra) and NIR (720-770 nm), where changes 
appeared between the reflectance spectra of healthy and un-

healthy plants. The middle of the bands is at wavelengths: λ1 
= 475.22 nm, λ2= 489.37 nm, λ3 = 524.29 nm, λ4 = 539.65 nm, 
λ5 = 552.82 nm, λ6 = 667.33 nm, λ7 = 703.56 nm, λ8 = 719.31 
nm, λ9 = 724.31 nm, and λ10 = 758.39 nm. Statistical (Stu-
dent’s t-criterion and cluster analysis) and derivative analysis 
were applied to the data. T-criterion was applied for determi-
nation of the statistical significance of differences (p<0.05) 
between the means of sets of the values of the reflectance 
spectra of un-inoculated and inoculated leaves on the 14th 
and 20th days after the inoculation. Statistical analysis was 
performed using STATISTICA 7.1 (StatSoft, 2005). First de-
rivative analysis was applied in order to assess the position of 
the inflection points of the averaged SRC in the red edge re-
gion which is very informative for presence of damage in the 
plants. Tobacco leaves were derived into three groups based 
on the degree of injury. 

Hierarchical cluster analysis on the groups of spectral data 
was performed. This is the major statistical method for find-
ing relatively homogeneous clusters of cases based on mea-
sured characteristics. It starts with each case as a separate 
cluster, i.e. there are as many clusters as cases, and then com-
bines the clusters sequentially, reducing the number of clus-
ters at each step until only one cluster is left. The clustering 
method uses the dissimilarities or distances between objects 
when forming the clusters.

Results and Discussion

From all inoculated plants three groups of leaves were se-
lected for spectral measurements with the aim to analyze the 
sensitivity of hyperspectral reflectance for revelation of dis-
ease and early diagnosis of symptoms in plants at different 
stages of infections.  In first (symptomless) group no visual 
symptoms were observed in the leaves. In some places the 
leaf tissue is thinner than the control. The leaves from the 
other two groups were with symptoms. Some of the leaves 
were with cuticle thickness and chlorotic yellow ring or con-
centric spots (with symptoms) and a part of leaves were with 
dark brown spots (necrotic spots).

Averaged SRC over all measured areas (up to 20 for each 
leaves group) of the control and infected tobacco plants, tak-
en on the 14th day after the inoculation, are shown in Figure 3.  
Differences in reflectance spectra were established at a great 
number of wavelengths in all investigated spectral ranges. The 
values of SRC of the two groups of leaves with symptoms are 
higher in the green, red, and NIR spectral ranges against the 
control. In the red edge, a shift of the SRC values to the shorter 
wavelengths was observed. For the rest (symptomless) group 
SRC is slightly decreased in green and red regions (520-680 
nm). In NIR region values of SRC are higher than the control.
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The results from the statistical analysis by applying the 
Student’s t-criterion on the data sets of all groups investigated 
tobacco leaves on the 14th day after the inoculation are dis-
played in Table 1. SRCs of symptomless leaves differed sta-
tistically significant against the control in four wavelengths in 
green region. The SRCs of the other two groups differed sta-
tistically significantly in all investigated wavelengths except 
in λ10 for group with necrotic spots. The differences between 
SRCs of all leaves and control SRCs are non-significantly at 
three wavelengths in NIR region.

First derivative analysis was applied to the averaged SRC 
of the control and three groups of infected tobacco leaves. 
Figure 4 shows the maximums of the derivatives of SRC of 
all investigated groups. For the two groups with symptoms 
the maximums are shifted to the lower wavelengths (about 
3-5 nm) whereas for the symptomless group – no shift is ob-
served. Figure 5 shows the maximum of the derivative of 
SRC of control leaves, which is located at 697.17 nm, and the 
maximum of the derivative of SRC of all leaves infected with 
TSWV that occurs at 694.81 nm. This maximum is shifted to 
the blue spectral region which is an indicator for the presence 
of the disease in tobacco plants.

The results from the hierarchical cluster analysis applied 
to a set of data measured on the 14th day after the inoculations 
of tobacco plants are displayed in Figure 6. A hierarchical 
tree diagram is made to show the linkage points. The clusters 
are linked at increasing levels of dissimilarity. According to 
the Tree cluster analysis, the spectral data was separated in 
three groups. In the first group, nearest to the control were 
symptomless leaves. Next group, statistically different from 
the control’s one, contained the data of leaves with symptoms 
and the SRC of all leaves. The leaves with necrotic spots be-
long to a separate group, statistically different of both the 
other groups and on the long distance of the healthy plants. 
These results are in accordance with the results from spectral 
analysis and t-criterion.

The results from serological analysis by DAS-ELISA 
test for the leaf samples from tobacco plants, cv. Samsun 
NN, taken on the 14th day after inoculation with TSWV are 
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Fig. 3. Averaged SRC of tobacco leaves on the 14th day 
after the inoculation with TSWV

Table 1 
Tobacco plants, cv. Samsun NN: p-values of the Student’s t-criterion for TSWV infection on the 14th day after the 
inoculation

Pairs  
compared

Control  
mean P

TSWV 
Symptomless 

mean
P

TSWV 
Nectotic 

mean
P TSWV 

Symptoms P
TSWV     

All leaves 
mean

λ1/λ1c 7.64 +  8.01 +++ 11 +++ 9.53 ++ 9.24
λ2/λ2c 8.77 ns 8.94 +++ 13.11 +++ 11.19 +++ 11.01
λ3/λ3c 31.73 +++ 26.5 +++ 41.07 +++ 39.62 +++ 36.63
λ4/λ4c 38.93 +++ 33.57 +++ 48.62 +++ 47.95 +++ 44.32
λ5/λ5c 40.21 +++ 34.9 +++ 50.52 +++ 49.56 +++ 45.83
λ6/λ6c 8.92 ns 9.32 +++ 16.95 +++ 12.49 +++ 12.55
λ7/λ7c 44.79 ns 38.58 +++ 61.38 +++ 56.79 ++ 52.16
λ8/λ8c 67.77 ns 64.82 +++ 78.53 +++ 78.07 ns 72.42
Λ9/λ9c 72.1 ns 70.49 ++ 81.45 +++ 81.9 ns 76.02
Λ10/λ10c 79.86 ns 81.83 ns 86.07 +++ 88.12 ns 82.14

Statistical significance at:  ns - not statistical significance of the differences, + - P<0.05, ++ - P<0.01, +++ - P<0.001



Ground Based Hyperspectral Remote Sensing for Disease Detection of Tobacco Plants	 1147

shown on the diagram in Figure  7. All samples showed pos-
itive extinction values (optical density, OD), higher than the 
value of cut off (0.088), i.e. presence of viruses was con-
firmed. For the leaves of the symptomless group the extinc-
tion value is also positive, i.e. the latent infection in some of 
the leaves has been occurred. Symptomless (latent) infec-
tions are very important for spreading out the virus diseas-
es. The plants with latent infections are virus carriers, but 
not virus diseased.

The averaged SRC over all measured areas (up to 20 
for each group of plants) of the control and infected tobac-
co plants, taken on the 20th day after the inoculation, are 
shown in Figure 8. It is seen that the values of SRC of the 
two groups of leaves with symptoms are increased in all 

spectral range against the control. In the red edge, a shift 
of the SRC values of infected leaves to the shorter wave-
lengths was observed. For the rest symptomless group, the 
SRC is decreased in green and NIR region because the 
leaves in some places were thinner, i.e. latent infection was 
present. 

The results from the statistical analysis by the Student’s 
t-criterion on the data sets of all investigated tobacco leaves 
on 20th days after the inoculation specify an increase of 
the number of statistically significant differences between 
spectral reflectance of control and infected plants as well 
as a shift of the red edge position to the lowest wavelengths 
(up to 4 nm) which is an indicator that the infection is go-
ing deep. For symptomless group SRCs differed statistical-
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ly significant at seven of investigated wavelengths. SRCs 
of all leaves and group with symptoms differed non-signif-
icant in the blue region at two wavelengths. SRC of group 
with necrotic spots differed significant at all wavelengths.

The first derivative analysis was applied to the SRC of 
control and three groups of infected tobacco leaves in order 
to assess the position of the inflection points in the red edge 
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Fig. 8.  Averaged SRC of tobacco leaves on the 20th day 
after the inoculation with TSWV

region. The maximum of the derivative of SRC of control 
leaves is located at 697.81 nm while for the group of all leaves 
infected with TSWV it occurs at 693.49 nm. It is shifted to 
the blue spectral region and the shift is bigger than on the 14th 
day after the inoculation which is an indicator for the devel-
opment of the disease.

The results from serological analysis by DAS-ELISA 
test are illustrated in Figure 9. They show the increase of the 
quantity of TSWV in all leaf groups which is an indicator that 
the infection is deepening.

Conclusions

The impact of viral infections on young tobacco plants, 
cultivar Samsun NN, caused by the widely spread in Bul-
garia Tomato spotted wilt virus (TSWV) on the leaf spec-
tral reflectance was investigated. The sets of hyperspectral 
reflectance data were analyzed by means of statistical (Stu-
dent’s t-criterion, cluster analysis) and derivative (first de-
rivative) analyses. For assessment of the presence and the 
degree of the viral infections serological analyses via DAS-
ELISA techniques were applied on samples from the same 
leaves. The results of all applied techniques were subjected 
to comparative analysis. The strong relationship established 
between the results from the remote sensing study and the 
serological analyses provides evidence for the importance of 
remote sensing hyperspectral reflectance data for conducting, 
easily and without damage, rapid assessments of plant health 
condition.
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