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Abstract

COLOVIC, R., L. PEZO and D. PALIC, 2015. Prediction of metabolizable energy content of poultry feedstuffs –  
response surface methodology vs. Artificial neural network approach. Bulg. J. Agric. Sci., 21: 1069–1075

Metabolisable energy (ME) represents portion of energy utilized by the animal. Experiments for determination of ME re-
quire test animals, collection of samples and excreta, and determination of total energy content of used material. Therefore, 
ME determination can be expensive and time consuming. The aim of this study was to investigate the effect of enzymatic 
digestible organic matter (EDOM) and values of proximate chemical analysis on prediction of true metabolisable energy 
(TME) of feedstuffs for broilers. The performance of Artificial Neural Networks (ANN) was compared with the performance 
of second order polynomial (SOP) model, as well as with experimental data in order to develop rapid and accurate method for 
prediction of TME.

Analysis of variance and post-hoc Tukey’s HSD test at 95% confidence limit have been calculated to show significant 
differences between different samples. Response Surface Method has been applied for evaluation of TME. Second order 
polynomial model showed high coefficients of determination (r2 = 0.927). ANN model also showed high prediction accuracy 
(r2 = 0.983). Principal Component Analysis was successfully used in prediction of TME.
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Abbreviations: ANN – Artificial Neural Network; BFGS – Broyden–Fletcher–Goldfarb–Shanno; CA – crude ash; 
CFa – crude fat; CFi – crude fibre; CP – crude protein; df – degrees of freedom; DM – dry matter;  
EDOM – Enzymatic digestible organic matter; F – F test value; ME – Metabolisable energy; Max – maximum; 
Min – minimum; MLP – multi-layer perceptron models; OM – organic matter, OMD – Organic matter 
digestibility; PCA – Principal Component Analysis; r2 – coefficient of determination; RSM – Response Surface 
Methodology; SD – standard deviation, SOP – second order polynomial model; SOS – Sum of Squares;  
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Introduction

For proper utilization of feedstuffs used in preparation of 
compound feeds, it is necessary to have information about 
ingredients’ nutritional quality. Accurate nutrient composi-
tion of the feedstuffs will enable formulation of correct bal-
anced diet and thus provide all required nutrients to the ani-
mals (Dale and Batal, 2002; De Leon et al., 2010). Complete 
information about the nutrient composition includes energy 

value of the ingredients, since only sufficient amount of en-
ergy allows performance of metabolic processes and animal 
activity. Metabolisable energy (ME) represents portion of en-
ergy utilized by the animal, i.e. bioavailable energy. Direct 
determination of ME of the feedstuffs implies in vivo experi-
ments (Mohamed, 1984; Girish et al., 2013). These experi-
ments require test animals, collection of samples and excreta, 
and determination of total energy content of used materials. 
Therefore, ME determination can be expensive and time con-
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suming. Thus, it is important to develop fast laboratory meth-
ods for accurate and inexpensive prediction of ME (Zhang, 
1994; Colovic et al., 2011).

Organic matter digestibility (OMD) is a nutritive value 
parameter which provides information about amount of to-
tal digestible organic matter, and for its calculation content 
of organic matter of feed, as well of faeces is needed. For 
decreasing of experimental expenses, in vitro experiments 
with exogenous enzymes can be performed, where the en-
zymes have aim to mimic the digestive processes in the 
animal. Multi-enzymatic incubation method was reported 
by Hvelplund et al. (1990) for estimation of the enzymatic 
digestibility of organic matter (EDOM) of straws. EDOM 
method was utilized by Palic and Muller (2006) for predic-
tion of the OMD of a wide range of ruminant feedstuffs. En-
zymatic determination of OMD was used by Wilfart et al 
(2008) to determine hydrolysis kinetics of four feedstuffs for 
pigs. Narashimha et al (2013) applied in vitro enzymatic as-
say on commonly used poultry feed ingredients as a tool for 
formulating customized enzyme mixtures for degradation 
of non-starch polysaccharides. Recently, mathematical mod-
elling has been increasingly used for the study of the given 
systems. Developed empirical models show a reasonable fit 
to experimental data and successfully predict ME (Perai et 
al., 2010). Nonlinear models are found to be more suitable 
for real process simulation. Second order polynomial (SOP), 
using Response Surface Methodology (RSM) and Artificial 
Neural Network (ANN) models have gained momentum for 
modelling and control of processes (Priddy and Keller, 2005; 
Khuri and Mukhopadhyay, 2010).  

ANN models are recognized as a good modelling tool 
since they provide the empirical solution to the problems 
from a set of experimental data, and are capable of handling 
complex systems with nonlinearities and interactions be-
tween decision variables (Almeida, 2002). The specific ob-
jective of this study was to investigate the effect of EDOM 
and values of proximate chemical analysis on TME of feed-
stuffs for broilers. The performance of ANNs was compared 
with the performance of SOP, as well as to experimental data 
in order to develop rapid and accurate method for prediction 
of TME.

Materials and Methods

Chemical analysis
Fifty seven feedstuffs commonly used in broiler diets 

were used in this study. AOAC official methods (AOAC, 
2000) were used for proximate analysis, i.e. determination of 
dry matter (DM), crude protein (CP), crude fat (CFa), crude 
fibre (CFi) and ash (CA) of the feedstuffs. Organic matter 

(OM) was calculated by subtracting CA content from total 
dry matter content.

For determination of the enzymatic digestibility of organ-
ic matter (EDOM) of the feedstuffs, a three-step method of 
Boisen and Fernandez (1997) developed for pigs, was modi-
fied to two consecutive incubation steps corresponding to di-
gestion in the stomach and the small intestine. In the first 
step, samples were incubated with pepsin at pH 2 and 40oC 
for the duration of 75 min. In the second step, samples were 
incubated with pancreatin at pH 6.8 and 40oC during 18 h. 
In each series of samples, a blank was included.  For precipi-
tation of solubilized protein sulphosalicylic acid was used. 
Liquid medium was filtrated and precipitated materials were 
collected, dried and ashed. Enzymatic digestibility of organic 
matter was calculated based on the results of DM and CA in 
the sample and residue, respectively.  

Determination of true metabolisable energy
The nitrogen corrected true metabolisable energy (TMEn) 

content of the feedstuffs was determined in vivo according 
to the procedure described by McNab and Blair (1988) us-
ing adult roosters. Each feedstuff was replicated among six 
roosters. 

 
Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a mathematical 
procedure used as a central tool in exploratory data analysis 
(Brlek et al., 2013). It is a multivariate technique in which the 
data are transformed into orthogonal components that are lin-
ear combinations of the original variables. PCA is performed 
by Eigenvalue decomposition of a data correlation matrix 
(Abdi and Williams, 2010). This transformation is defined in 
such a way that the first component has the largest possible 
variance. This analysis is used to achieve maximum separa-
tion among clusters of parameters (Pezo et al., 2013). This 
approach, evidencing spatial relationship between processing 
parameters, enabled a differentiation between the different 
samples.

Second order polynomial model (SOP)
According to general recommendations, prior to ANN 

modelling analysis of variance (ANOVA) was performed, in 
order to check the significant effect of the input variables over 
the output, as well to justify the later use of ANN model by 
coefficient of determination (r2). Analysis and mathematical 
modelling was performed using StatSoft Statistica 10.0 soft-
ware (Statistica, 2010).

The SOP model was used for estimation of the main effect 
of the process variables on responses. The independent vari-
ables used for modelling were DM, CP, CF, CF, CA, OM, and 
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EDOM, while TMEn was response variable. SOP model was 
fitted to data collected by experimental measurements:
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where: β0, βi, βii, βij are constant regression coefficients; Y is 
response variable; while Xi and Xj are independent variables. 
The significant terms in the model were found using ANOVA 
for each dependent variable.

Artificial Neural Network (ANN) modelling 
The database for ANN was randomly divided to: training 

data (60%), cross-validation (20%) and testing data (20%). 
The cross-validation data set was used to test the performance 
of the network, while training was in progress as an indica-
tor of the level of generalization and the time at which the 
network has begun to over-train. Testing data set was used to 
examine the network generalization capability. 

To improve the behaviour of the ANN, both input and out-
put data were normalized. In order to obtain good network 
behaviour, it is necessary to make a trial and error proce-
dure and also to choose the number of hidden layers, and the 
number of neurons in hidden layer(s). A multi-layer percep-
tron model (MLP) consisted of three layers (input, hidden 
and output). Such a model has been proven as a quite capable 
of approximating nonlinear functions (Hu and Weng, 2009) 
giving the reason for choosing it in this study. In this work 
the number of hidden neurons for optimal network was ten.  
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was 
used for ANN modelling.

Training, testing and system implementation
After defining the architecture of ANN, the training step 

was initiated. The training process was repeated several 
times in order to get the best performance of the ANN, due 
to a high degree of variability of parameters. It was accepted 
that the successful training was achieved when learning and 
cross-validation curves – Sum of Squares (SOS) vs. training 

cycles – approached zero. Testing was carried out with the 
best weights stored during the training step. Coefficient of 
determination (r2) and SOS were used as parameters to check 
the performance (i.e. the accuracy) of the obtained ANNs.

After the best behaved ANN was chosen, the model was 
implemented using an algebraic system of equations to pre-
dict TMEn content of feedstuffs. 

Sensitivity analysis
Sensitivity analysis is a sophisticated technique which 

is necessary to use for studying the effects of observed in-
put variables and also the uncertainties in obtained models 
and general network behaviour. Neural network were tested 
using sensitivity analysis, to determine whether and under 
what circumstances obtained model might result in an ill-
conditioned system (Taylor, 2006). On the basis of devel-
oped ANN model, sensitivity analysis was performed in 
order to more precisely define the influence of processing 
variables on the observed outputs. The infinitesimal amount 
(+ 0.0001%) has been added to each input variable, in 10 
equally spaced individual points encompassed by the mini-
mum and maximum of the train data. These signals were 
normally distributed with a constant intensity and frequen-
cy. It was used to test the model sensitivity and measure-
ment errors.

Results and Discussion

Results of proximate analysis, EDOM and TMEn content 
of poultry feedstuffs are presented using descriptive statistics 
in Table 1. DM, CP, CFa, CFi, CA, OM, EDOM, and TMEn 
varied significantly, implying that fitting of the experimental 
data can be performed using SOP and ANN modelling.

Principal Component Analysis (PCA)
Preliminary performed calculation for estimation of ef-

fects, using RSM of experimental data, showed that only 
EDOM, CFa, CFi, and CA variables influenced TMEn at sta-

Table 1 
Results of proximate analysis, EDOM and TMEn content of poultry feedstuffs (n = 57)

DM,
%

CP*,
%

CFa*,
%

CFi*,
%

CA*,
%

OM*,
%

EDOM,
%

TMEn,
MJ/Kg DM

Average 89.18 32.76 6.07 8.08 6.08 93.92 72.64 13.85
 SD 1.81 21.88 5.62 8.84 4.38 4.38 15.51 3.58
Min 85.72 8.07 0.78 0.19 0.99 82.78 28.42 4.68
Max 93.82 75.45 20.96 34.70 14.88 99.01 95.49 18.17
Var 3.27 478.93 31.60 78.21 19.22 19.22 240.46 12.82

* Results expressed on dry matter basis, SD - standard deviation, Min - minimum, Max - Maximum, Var. - variance
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tistically significant level. Therefore DM, CP and OM were 
excluded from further calculation.

The PCA applied to the given data set has shown a dif-
ferentiation between the samples according to used process 
parameters, and it was used as a tool in exploratory data 
analysis to characterize and differentiate neural network in-
put parameters (Figure 1). As it can be seen, there is a neat 
separation of the observed samples according to used assays. 
Quality results show that the first two principal components, 
accounting for 82.60% of the total variability for TMEn, can 
be considered sufficient for data representation. CFi content, 
TMEn and EDOM had been more influential for the first fac-
tor coordinate calculation (accounting 27.8, 30.8 and 29.3% 
contribution, respectively), while CFa and CA content had 
been more influential for the second factor coordinate calcu-
lation (24.1 and 72.4%, respectively). 

PCA (Figure 1) showed quite good discrimination be-
tween samples. Alfalfa samples are grouped at the left side 
of the graph, while various soya samples are grouped at the 
right side of the graph. Fish meal samples are located in the 
upper right corner, while white and yellow maize samples are 
placed in the lower right corner. Sunflower meal and wheaten 
bran are located in the middle of graph. Position of chemi-
cal analysis parameters, EDOM and TMEn is showing that 
EDOM and TMEn are positively correlated, while CFi and 
TMEn are negatively correlated, meaning that when CFi of 
the raw material is decreasing and EDOM is increasing, 
TMEn will increase. Presented influence of CFi on ME of the 
feedstuffs is in accordance with the results of Zhang et al. 
(1994) who showed that increase in neutral detergent fibre 

reduces ME of barley samples. Palic et al. (2012) proposed 
linear equations for  predicting TMEn  using 23 samples of 
complete diets and the same combination of feedstuffs used 
in this  study, and they also showed  that TMEn is in posi-
tive correlation with EDOM. However, proposed linear equa-
tions had considerably poor prediction of experimental data 
(r2 ranged from 0.689 to 0.844). 

Analysis of variance and SOP models
Analysis of variance (ANOVA) was conducted for ob-

tained SOP model, and output were tested against the impact 
of input variables (Table 2). Analysis revealed that linear, 
quadratic, as well as interchange terms considerably influ-
enced forming of SOP model for TMEn calculation.

According to ANOVA results, TMEn was mostly affected 
by quadratic term of EDOM, which was statistically signifi-
cant at p < 0.05 limit. Linear term of CFa was also very influ-
ential, as well as quadratic terms of CA and CFi content (all 
these terms were statistically significant at p < 0.05 limit). 
Nonlinear, interchange terms of CFi × EDOM and CFa × CFi 
were also statistically significant, showing the importance of 
CFa, CFi and EDOM in TMEn calculation. Most of statisti-
cally significant terms in SOP calculation are of non-linear 
nature, which leads to the conclusion that using ANN calcu-
lation would improve the validity of the model.

Fig. 1. Biplot graph of feedstuffs for broilers with the 
results of proximate analysis, EDOM and TMEn content 

Table 2
Analysis of variance (ANOVA) of feedstuffs for broilers
Factor df SOS F p
CFa 1 11.99* 12.87 0.00
CFa2 1 0.89 0.95 0.33
CFi 1 1.09 1.17 0.29
CFi2 1 7.90* 8.48 0.01
CA 1 0.00 0.00 0.96
CA2 1 8.37* 8.99 0.00
EDOM 1 0.18 0.19 0.66
EDOM2 1 22.72* 24.40 0.00
CFa × CFi 1 4.46* 4.79 0.03
CFa × CA 1 2.24 2.40 0.13
CFa × EDOM 1 1.47 1.58 0.22
CFi × CA 1 0.39 0.42 0.52
CFi × EDOM 1 13.05* 14.01 0.00
CA × EDOM 1 0.86 0.92 0.34
Error 42 39.11
r2 0.936

*Significant at p<0.05 level, 95% confidence limit 
df - degrees of freedom, SOS - sum of squares, F - F test value
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The residual variance, marked as ‘Error’ in Table 2, pres-
ents the model disagreement with the experimental values   
i.e. contributions of terms that are not described in the SOP 
model. Developed model showed statistically insignificant 
deviation from the experimental values   of the model, which 
confirmed their suitability. Therefore, it was confirmed that 
obtained model was statistically significant and in agreement 
with experimental results.

Neurons in the ANN hidden layer
All variables considered in the RSM, were also used for 

the ANN modelling. Determination of the appropriate num-
ber of hidden layers and number of hidden neurons in each 
layer is one of the most critical tasks in ANN design. The 
number of neurons in a hidden layer depends on the complex-
ity of the relationship between inputs and outputs. As this 
relationship becomes more complex, more neurons should be 
added (Curcic et al., 2014). 

The optimum number of hidden neurons was chosen upon 
minimizing the difference between predicted ANN values 
and desired outputs, using Sum of Squares (SOS) during test-
ing as performance indicator. Used multi-layer perceptron 
models (MLPs) were marked according to StatSoft Statisti-
ca’s notation. MLP was followed by number of inputs, num-
ber of neurons in the hidden layer, and the number of outputs. 
According to ANN performance (Table 3), it was noticed that 
the optimal number of neurons in the hidden layer for TMEn 
calculation was 10 (network MLP 4-10-1), when obtaining 
high values of r2 (0.983 for ANN during training period, com-
pared to 0.936 for SOP model) and low values of SOS. 

Simulation of the ANN
Optimal network, used for prediction of TMEn was able 

to predict reasonably well the output for a broad range of the 
process variables (coefficients of determination reached 0.983 
for TMEn prediction). The predicted values were very close to 

the experimental (target) values in most cases, in terms of r2 
value for both SOP and ANN models. 

It can be seen that the r2 value for ANN model is greater 
than this associated with the SOP model. This agrees with Pe-
rai et al. (2010) who compared different statistical approaches 
for prediction of ME of meat and bone meal. These authors 
obtained the highest r2 value (0.94) when ANN was used.  
Generally, ANN model is more complex (61 weights-biases 
for ME calculation) than SOP, and it has performed better fit-
ting of experimental data due to the high nonlinearity of the 
developed system (Kalovic et al., 2013; Chattopadhyaya and 
Rangarajana, 2014) (Figure 2). 

The mean and the standard deviation of residuals have 
also been analysed. The mean of residuals for ANN mod-
el was -0.143, while the standard deviation of residuals was 
0.897. These results showed a good approximation to a nor-
mal distribution around zero with a probability of 95% (2 
× SD), which means a good generalization ability of ANN 
model for the range of observed experimental values.

Sensitivity analysis
In order to or assess the effect of changes in the outputs 

due to the changes in the inputs, a sensitivity analysis was 
performed. The greater effect observed in the output imply 
that greater sensitivity is presented with respect to the input 
(Pezo et al., 2013). Sensitivity analysis has been performed 
to test an infinitesimal change in an input value in 10 equally 
spaced individual points, ranged by the minimum and maxi-
mum of the observed assay, in order to explore the changes in 
observed outputs. It is also used to test the model sensitivity 
and measurement errors (Figure 3).

Table 3
Performance of the optimal ANN
Network name MLP 4-10-1
Training Testing Validation
r2=0.9834 r2=0.9605 r2=0.9109
Training error Testing error Validation error
0.0012 0.0060 0.0046
Training algorithm: BFGS 52
Error function: SOS
Hidden activation: Exponential
Output activation: Exponential
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The influence of the input over the output variables, i.e. cal-
culated changes of output variables for infinitesimal changes 
in input variables, is shown on Figure 3. Obtained values cor-
responded to level of experimental errors, and also showed 
the CFa, CFi, CA, and EDOM influence on TMEn. According 
to Figure 3, TMEn was mostly influenced by EDOM, which 
was also confirmed by ANOVA analysis of SOP model and 
PCA analysis. 

Sensitivity analysis is used to show the influence of the 
inputs, but it also shows the importance of an input variable 
at a given point in the input space (Saltelli, 2010).  As can be 
seen from Figure 3 that TMEn was affected more strongly 
at infinitesimal changes of average EDOM values, while the 
influence of CFi and CA content was more observable at the 
minimum of input range. The influence of CFa remained the 
same through the whole input range. These findings are in 
accordance with PCA and ANOVA analysis, as well as with 
experimental measurements.

Conclusion

This paper presents the influence of crude protein, crude 
fat, crude fibre, ash and enzymatic digestible organic mat-
ter on prediction of true metabolisable energy of feedstuffs 
for broilers. The observed samples were characterized by the 
results of proximate analysis, EDOM and in vivo TMEn con-
tent of poultry feedstuffs.  SOP and ANN-based models were 
developed for prediction of TMEn for a wide range of input 
variables. Both models are easy to implement and could be 
effectively used for predictive purposes, modelling and opti-
mization. As compared to RSM, ANN model yielded a better 
fit of experimental data. Taking into account that a consider-
able amount and wide variety of data were used in the pres-

ent work to obtain the ANN model, and considering that the 
model turned out to yield a sufficiently good representation 
of the experimental results, it can be expected that it will be 
useful in practice.
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