# Impact of ginger compound (Zingiber officinale Roscoe) as control of brown planthopper (Nilaparvata lugens Stal.)

Rahmad S. Siregar<sup>1\*</sup>, Imam H. Bangun<sup>2</sup>, Aflahun F. Siregar<sup>1</sup>, Salsabila Salsabila<sup>1</sup>, Yuli Widiyastuti<sup>3</sup>, Lita Nasution<sup>2</sup> and Sasmita Siregar<sup>1</sup>

- <sup>1</sup> Universitas Muhammadiyah Sumatera Utara, Department of Agribusiness, Faculty of Agriculture, Medan 20238, Indonesia
- <sup>2</sup> Universitas Muhammadiyah Sumatera Utara, Department of Agrotechnology, Faculty of Agriculture, Medan 20238, Indonesia
- <sup>3</sup> Center for Research and Development of Medicinal Plants and Traditional Medicines, Agency of Health Research and Development, Ministry of Health, Karanganyar Regency 57792 Central Java, Indonesia \*Corresponding author: rahmadsyukur@umsu.ac.id

## **Abstract**

Siregar, R. S., Bangun, I. H., Siregar, A. F., Salsabila, S., Widiyastuti, Y., Nasution, L. & Siregar, S. (2025). Impact of ginger compound (*Zingiber officinale* Roscoe) as control of brown planthopper (*Nilaparvata lugens* Stal.). *Bulg. J. Agric. Sci.*, 31(5), 933–939

One of the most critical pests on rice plants is the brown planthopper (*Nilaparvata lugens* Stal.), commonly referred to as BPH. BPH can attack rice at all stages of plant growth, and severe infestations can lead to crop failure. Alternatives to control BPH could be achieved by using plant-based pesticides from *Zingiber officinale* Roscoe in the form of formulations. This study aimed to determine the activity and ability of *Z. officinale* R botanical insecticide formulation and its economic potential for controlling BPH. The study used a completely randomized design (CRD) with seven treatments and four replications. *Z. officinale* R. concentrations used were 0.25%, 0.49% 0.70%, 0.98%, 1.38%, treatment using synthetic pesticides, and control. Data were analyzed using variance (ANOVA), and significant differences were further tested with LSD at the 5% level. Data were processed using the Statistical Package for the Social Sciences (SPSS) software. The results showed that the formulation of botanical pesticides from *Z. officinale* R. could control BPH. Treatment with a concentration of 1.38% was the most effective in killing BPH nymphs by 80%. Application of the *Z. officinale* R. formulation affected the daily mortality of BPH nymphs. BPH nymphs died in rice 1-4 days after application. *Z. officinale* R. formulation affected the number of BPH adults formed. The adults formed were 15% at a concentration of 1.38%.

Keywords: Zingiber officinale; botanical insecticide; formulation; mortality

## Introduction

One of the important pests of rice plants (*Oryza sativa* L.) is the brown planthopper (BPH), *Nilaparvata lugens* Stal. (Hemiptera: Delphacidae) (Baehaki et al., 2017). BPH attacks rice in all growth phases, destroying it by sucking plant cell fluids and acting as vectors for viral diseases. Se-

vere attacks can cause puso (hopperburn) and crop failures (Sianipar et al., 2017). Effective control of BPH is necessary because it is a pest that is easily resistant to synthetic insecticides (Ali, 2018), exhibits high feeding activity, has a rapid life cycle, and can fly long distances during its adult phase (Listihani et al., 2022). Synthetic insecticides are widely used by farmers today (Nath et al., 2024). The negative im-

pacts of synthetic insecticides include farmers' dependence on continuous use, environmental pollution, the killing of natural enemies, the development of pest resistance and resurgence, and the accumulation of soil residues and residues in agricultural commodities (Singkoh and Katili, 2019).

The implementation of integrated pest management (IPM) is the right solution for addressing pest problems while also preserving the environment (Al Shalchi and Al-Jorany, 2018; Munar et al., 2023). IPM actions can effectively control BPH pests (Cai et al., 2023). One pest control technique that is compatible with other control techniques is the use of botanical insecticides. The advantages of botanical insecticides are low residues for plants and soil, easy decomposition, and safety for non-target organisms (Sutriadi et al., 2020). Additionally, the level of pest resistance is low, and the residues in the products are minimal.

The use of pesticides by growers, which is considered practical for controlling pests and plant diseases, hurts the environment. In field applications, the use of synthetic pesticides is not always practical; only about 20% are on target, while the remaining 80% falls to the ground and accumulates in the soil (Othman and Kakey, 2021; Zarkani and Prijono, 2009). Pesticide residues will be able to poison non-target organisms that are beneficial to humans (for example natural enemies of pests, as well as other animals that support the function of nature conservation), which will cause new pest strains that are resistant to pesticides, causing pest resurgence (increasing pest populations that cause pesticides to occur) explosion of secondary pests and potential pests (Adriyani, 2006).

The utilization of plants as botanical insecticides is an alternative solution to reduce the use of synthetic pesticides (Palla et al., 2020). Bioinsecticides typically contain bioactive compounds, including cyanides, terpenoids, phenylpropanes, alkaloids, acetogenins, essential oils, flavonoids, steroids, and tannins (Miranti and Fatigin, 2018). The Zingiberaceae family, which is reported to have insecticidal properties, includes the ginger plant (Zingiber officinale R.) (Madreseh-Ghahfarokhi et al., 2018). (Liu et al., 2022) reported that there are eight compounds in Z. officinale R. including phenolic acids, flavonoids, alkaloids, quinones, terpenoids, lignin, coumarins, and tannins. The highest content was phenolic acid, followed by flavonoids at 41.5% and 27.1%, respectively. According to spectral analysis, it was known that the most abundant phenolic acid was 10-Paradol at 7.17%, and the most abundant flavonoid was guercetin-3-O-rutinoside at 12.88%. The bioactive compounds in Z. officinale R. can be used as insecticides to control aphids.

Anwar et al. (2018) reported that the use of *Z. officinale* R. as a botanical insecticide significantly reduced the *Aedes* 

aegypti population at concentrations of 0.5%, 1.0%, 1.5%, 2.0% and 2.5% with successive mortality of 32.5%, 33.8%, 51.3%, 58.8% and 65.0%. Z. officinale R. has been reported to have insecticidal activity, namely inhibiting Drosophila melanogaster mating, inhibiting oviposition because it is repellent to the adult whitefly Bemisia argentifolii (Zhang et al., 2004), and causing mortality of Diaphania hyalinata larvae (Moreira da Silva et al., 2020). Z. officinale R. which contains flavonoid compounds, was also reported to be effective in controlling the leafcutter parasite population of *Pteromalus venustus* on alfalfa plants and to have insecticidal activity against Tribolium castaneum (Ahmad et al., 2019; Ong et al., 2020). Fumigation at sublethal concentrations, furthermore, significantly reduced the oviposition potential of adults and inhibited the development of larvae to pupae and pupae to adults, with 40 and 80% of the 24hour LC50 of Z. officinale R. essential oil (Chaubey, 2011). Preliminary test results showed that the application of the Z. officinale R. formulation on BPH nymphs suppressed the development of BPH nymphs at concentrations of 0.25%, 0.5%, 0.75%, and 1%, with consecutive nymphal mortality rates of 20%, 51.2%, 55.6%, and 60%, respectively. Nymph mortality occurred 2–4 days after application. This study aimed to determine the activity and capability of Z. officinale R. botanical pesticide formulation and its economic potential for controlling BPH.

# Methodology

#### Study Site

The study was conducted at the Insect Bioecology Laboratory, Faculty of Agriculture, Andalas University, from September 2022 to March 2023.

# Research Design

The study employed a completely randomized design (CRD) with seven treatments and four replications. *Z. officinale* R. was used at concentrations of 0.25%, 0.49%, 0.70%, 0.98%, and 1.38%, along with synthetic pesticides and a control—calculation of concentration based on preliminary tests.

#### Nilaparvata lugens Stal (BPH)

Twenty pairs of BPH adults were collected from rice fields at the Pauh sub-district, Padang city, and transferred into jars containing rice grains of the IR42 variety. BPH adults were released after 3 days of infestation so that the stadia obtained were uniform. Rice seedlings were reared until the BPHs developed into third-generation second-instar nymphs.

# Preparation of raw materials for botanical insecticides

Processing is performed by cutting the rhizome of Z. of-ficinale R. into small pieces to facilitate the fast drying process. Drying was carried out in a rattan tray with a diameter of 60 cm, which was first covered with paper. This drying process was performed for  $\pm$  2 weeks until the rhizomes became completely dry (Jebur and Almaaeny, 2018). After Z. officinale R. was dried, the material was refined using a blender. The results of the blender from Z. officinale R. were sifted using a 0.5 mm sieve to obtain Z. officinale R. powder.

# Extraction of Z. officinale Roscoe

Z. officinale R. was extracted using the maceration digestion method (Putri, 2014). Z. officinale R. powder (50 g) was weighed and placed in a 1000 mL Erlenmeyer. Next, 250 mL of 96% ethanol was added at a ratio of 1:5. The mixture was heated and stirred on a hot plate for 120 min at 40°C. It was left for 24 h so that the red ginger powder could settle. The samples were filtered using Whatman filter paper No. 41. Subsequently, they were evaporated using a rotary evaporator at a temperature of 45°C and a pressure of 227 barmm Hg. The solution obtained from the evaporation process was reused to re-soak the plant extract dregs up to three immersions. The extract obtained was then stored in a refrigerator at 4°C until used for testing.

#### Formulation of Z. officinale Roscoe

The extract obtained from *Z. officinale* R. plant material is used as a basic ingredient in making an emulsifiable concentrate (EC) with a 20% fraction. The 20 EC formulation was prepared by mixing 20% active extract ingredients, 10% Tween 80 as an emulsifier, and 70% methanol as a carrier (by volume), then stirring until all the ingredients were thoroughly mixed.

## Formulation testing against BPH

Ten rice stalks, aged 14 days after the seedlings were planted in plastic cups filled with soil media. Ten instar II BPH nymphs were infested into the rice seedlings and then covered with tubular plastic mica. The top was covered with fine gauze so that the BPH would not come off. The pesticide formulation was applied evenly to the BPHs according to the specified concentration. The BPH count was maintained, and the nymph mortality was counted until 7 days after application of *Z. officinale* R. The BPH were maintained until the adult stage was formed, and the number of adults formed, as well as the number of adults that were not disabled, was recorded.

Nymph mortality = 
$$\frac{number\ of\ living\ nympfs}{number\ of\ nympfs\ teste} \times 100\%$$

Adults formed = 
$$\frac{number\ of\ living\ adults}{number\ of\ nympfs\ teste} \times 100\%$$

## Data analysis

The data were processed using variance, and if they were significantly different, they were further tested using LSD at the 5% level.

## **Results**

The results showed that the application of *Z. officinale* R. formulation increased the mortality of BPH nymphs. The highest BPH nymph mortality was observed at a concentration of 1.38%, with a mortality rate of 80%. Concentrations of 0.70% and 0.90% had the same ability to increase the mortality of BPH nymphs by 60% and 65%, respectively. The lowest mortality was observed in the *Z. officinale* R. formulation treatment at a concentration of 0.25%, with a nymph mortality of 35%. These results indicate that the increase in the concentration of the *Z. officinale* R. formulation is proportional to the increase in the mortality of BPH nymphs; the higher the concentration, the higher the mortality of BPH nymphs (Table 1).

Table 1. Mortality of BPH nymphs by spraying the botanical insecticide formulation *Z. officinale* Roscoe

|                       | Percentage nymph mortality of BPH (%) |   |      |   |  |
|-----------------------|---------------------------------------|---|------|---|--|
| Treatments            | $\pm$ SD                              |   |      |   |  |
| Synthetic insecticide | 90.00                                 | ± | 0.82 | a |  |
| 1.38%                 | 80.00                                 | ± | 0.58 | ь |  |
| 0.98%                 | 65.00                                 | ± | 0.82 | c |  |
| 0.70%                 | 60.00                                 | ± | 0.82 | С |  |
| 0.49%                 | 50.00                                 | ± | 0.82 | d |  |
| 0.25%                 | 35.00                                 | ± | 0.58 | e |  |
| Control               | 0                                     | ± | 0    | f |  |

 $\it Note:$  numbers followed by the same letters are not significantly different based on the LSD test level of 5%

The formulation of *Z. officinale* R. in the form of EC suppresses the development of BPH. However, it has a low ability to increase nymph mortality when compared to treatments using synthetic insecticides. The daily mortality of nymphs treated with *Z. officinale* R. formulations occurred on days 1 – 4. Concentrations of 1.38%, 0.25%, and 0.49% took 3 days to kill BPH nymphs, which had the same ability as treatments using synthetic insecticides. Concentrations of 0.70% and 0.98% took 4 days to kill BPH nymphs, which was longer than the other treatments (Figure 1).

The results showed that the application of *Z. officinale* R. formulation reduced the number of BPH adults formed. The

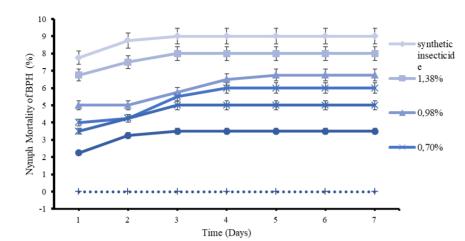



Fig. 1. Daily mortality of BPH nymphs by spraying the botanical insecticide formulation *Z. officinale* Roscoe

number of adults formed affects the number of offspring in the next generation. If there are many adults, the number of offspring may also increase, and vice versa. Application of the *Z. officinale* R. formulation by spraying reduced adults formation to 15% of the 10 tested nymphs. The number of adults formed by the application of *Z. officinale* R. formulations had the same ability as synthetic insecticides. A concentration of 0.25% had a lower ability to reduce the number of adults formed, which was equal to 65%.

The formulation of the botanical pesticide *Z. officinale* R. resulted in the death of BPH nymphs. Affected BPH nymphs have a characteristic coloration of the thorax, while the abdomen has a more discolored, soft body. Infected BPH nymphs have initial symptoms, namely slowing of the movement of the nymphs; over time, the body becomes stiff, and the BPH nymphs fall to the ground and eventually die (Figure 2).

The administration of various concentrations of *Z. offici-nale* R. affected the mortality rate and number of BPH adults formed. The most influential concentration in providing

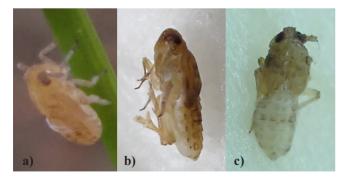



Fig. 2. (a) normal BPH nymphs treated as a control (b) BPH nymphs that died because of the botanical pesticide formulation *Z. officinale* Roscoe and (c) BPH nymphs that died because of synthetic insecticides

mortality and feeding inhibition in BPH nymphs was 1.38%, with a mortality rate of 80% (Table 1), and the percentage of imagoes formed was 15% (Table 2). *Z. officinale* R. contains active compounds that have the potential to be used as botanical insecticides (Miranti and Fatigin, 2018).

According to Simmonds (2003), flavonoid compounds can influence appetite and egg-laying behavior. (Ateyyat et al., 2012) reported that flavonoid compounds could kill aphid nymphs. Increasing the concentration of flavonoids increases the mortality of nymphs and has less impact on the natural enemy Aphelinus mali than the effect caused by the imidacloprid insecticide (Abbas et al., 2020). Saponins exhibit apparent insecticidal activity, causing increased mortality, reduced food intake, decreased insect weight, inhibited development/growth, inhibited molting, and decreased reproduction. According to Majid et al (2011) Moreover, emit volatile mixtures to attract natural enemies of insect pests.

Research from Liu et al. (2022) showed that the content of phenolic acid in *Z. officinale* R. was the highest, reaching 41.5%, followed by flavonoids (27.1%) and alkaloids (11.9%) (Liu et al., 2022). Phenolic acids are oxyhydryl-containing benzene-ring compounds with a unique aromatic

Table 2. The percentage of BPH adults was formed by spraying the botanical insecticide *Z. officinale* Roscoe

| Treatments            | Percentage adults formed (%) ± SD |   |      |   |  |
|-----------------------|-----------------------------------|---|------|---|--|
| Control               | 100.00                            | 土 | 0    | a |  |
| 0.25%                 | 65.00                             | ± | 0.58 | b |  |
| 0.49%                 | 50.00                             | ± | 0.82 | c |  |
| 0.70%                 | 40.00                             | ± | 0.82 | d |  |
| 0.98%                 | 32.50                             | ± | 0.50 | d |  |
| 1.38%                 | 15.00                             | ± | 0.58 | e |  |
| Synthetic insecticide | 10.00                             | ± | 0.82 | e |  |

 $\it Note:$  numbers followed by the same letters are not significantly different based on the LSD test level of 5%

odor. Several studies have demonstrated that phenolic acids exhibit an insecticidal effect; for example, ferulic acid and coumaric acid can influence ovipositional selection in *Pieris rapae* (Walker et al., 2014). Tannic acid can extend the growth period of aphids and reduce daily fecundity (Chrzanowski et al., 2012), and salicin significantly reduces feeding function and gypsy moth survival rate. In addition, *Z. officinale* R. inhibits the growth of nymphal aphids, causing them to grow slowly and increasing their mortality. *Z. officinale* R. extract at a concentration of 20% can cause 92 the death of *Leptocorisa oratorius* (Yuandita, 2018).

Z. officinale R contains active compounds that inhibit the growth of nymph aphids, causing mass death. According to the flea digestive enzyme test, the activities of protease, lipase, and α-amylase were inhibited. Similarly, research by Chen et al. (2020) found that carvacrol can inhibit digestive enzyme activity in Lymantria dispar. Z. officinale R. may also contain compounds effective at inhibiting the digestive enzymes of nymph aphids. Z. officinale R can also inhibit the growth and development of sorghum aphids by inhibiting digestive enzymes and affecting protective enzymes and detoxification enzymes, which can cause the death of aphids. (Miladi et al., 2019) reported that Pergularia tomentosa extract significantly increased the death of Locusta migratoria nymphs, and (Xin et al., 2019) reported that sulfoxaflor affected the development and increased mortality of Sitobion avenae and Rhopalosiphum rice lineages.

The mechanism by which active compounds contained in red ginger enter the cell involves reacting with the cell membrane as a contact poison, damaging the cell membrane, disrupting its permeability, and causing lysis (Macwan et al., 2016). Ohsawa (2000) said that cell membranes, composed of lipids and proteins, are very susceptible to chemicals that can result in a decrease in the surface tension of the plasma membrane. Damage to the plasma membrane disrupts the transport of nutrients (compounds and ions) through the cell membrane, resulting in a deficiency of essential nutrients needed for growth. In addition to causing the release of the material in the cells and disrupting the process of transporting nutrients by the cells, damage to the cytoplasmic membrane causes other compounds found in red ginger to penetrate more freely into the bodies of the larvae.

A decrease in the activity of the digestive glands affects the chemical digestion process in the digestive tract, damaging the epithelial cells that produce digestive enzymes and damaging the regenerative cells that renew dead or damaged epithelial cells. The presence of the active compound zingiberen in the red ginger rhizome filtrate stimulates barrier receptors, which in turn send anti-feeding signals to the insect nerve center by inhibiting or disrupting impulse bursts

in the nervous system. As a result, they cannot detect the presence of food around them, making it difficult for insects to perform feeding activities (Hermawan et al., 2010). Botanical pesticides can cause damage to the digestive tract and obstruct the olfactory organs in *S. litura*, thereby preventing the detection of food and reducing the feeding activity of *S. litura* (Tesari et al., 2024).

This is because reduced activity and a low level of eating insects cause them to become weak and die slowly (Strong and Brown, 1987). Saponin compounds in red ginger rhizomes exhibit insecticidal activity, which can lead to increased mortality, reduced food intake, inhibited development and growth, and disrupted molting and reproduction in insects.

Kaempferol also works physiologically as a digestive poison by causing damage to the digestive tract in the body of larvae, resulting in a decrease in the activity of the digestive glands. A decrease in the activity of the digestive glands affects the chemical digestion process in the digestive tract due to damage to epithelial cells that produce digestive enzymes and damage to regenerative cells that renew dead or damaged epithelial cells (Anwar et al., 2018). The presence of the active compound zingiberne in red ginger filtrate was also reported by to stimulate barrier receptors which will then send an "anti-feeding signal" to the insect's nervous center by inhibiting or disrupting impulse spikes in the nervous system, so that they cannot smell (recognize information taste) so they cannot recognize the presence of food. As a result, he cannot eat properly around him (Hermawan et al., 2010).

# Conculsion

Treatment with a concentration of 1.38% was the most effective in killing *Nilaparvata lugens* Stal BPH nymphs by 80.00%. Application of *Z. officinale* R. formulation affected the daily mortality of BPH nymphs. On average, BPH nymphs died in rice 1-4 days after application. *Z. officinale* R. formulation affected the number of BPH adults formed. The number of adults formed was 15% at a concentration of 1.38%.

#### References

**Abbas, L. M. R., Hashim, A. J. & Kadhim, B. J.** (2020). Evaluation of myrtus communis flavonoid as antidermatophtic and keratinase inhibitior. *The Iraqi Journal of Agricultural Science*, 51(6), 1525 – 1533. https://doi.org/10.36103/ijas.v51i6.1180.

**Adriyani, R.** (2006). Efforts to control environmental pollution caused by the use of agricultural pesticides. *Jurnal Kesehatan Lingkungan*, 3(1), 95 – 106.

- Ahmad, F., Iqbal, N., Zaka, S. M., Qureshi, M. K., Saeed, Q., Khan, K. A., Ghramh, H. A., Ansari, M. J., Jaleel, W. & Aasim, M. (2019). Comparative insecticidal activity of different plant materials from six common plant species against *Tribolium castaneum* (Herbst)(Coleoptera: Tenebrionidae). Saudi Journal of Biological Sciences, 26(7), 1804 1808. DOI: 10.1016/j.sjbs.2018.02.018.
- Al Shalchi, H. Y. & Al-Jorany, R. S. (2018). Evaluation of Some Biological Agents as An Integrated Pestmanagement Components to Control Cuccurbit Fruit Fly (Leow) Dacus Ciliatus and Melon Fruit Fly Dacus Frontalis (Beker) on Cucumber. *Iraqi Journal of Agricultural Sciences*, 48(6-B). https://doi.org/10.36103/ijas.v48i6%20B.280.
- Ali, A. E. (2018). Effectiveness of Four Insecticides to Control Citrus Leafminer (Phyllocnstis Citrella Stainton)(Lepidoptera: Gracillaridae) on Orange Trees at River Nile State, Sudan. *The Iraqi Journal of Agricultural Science*, 49(4), 617. https://doi. org/10.36103/ijas.v49i4.70.
- Anwar, C., Syukur, K. M., Dalilah, D., Salni, S. & Novrikasari, N. (2018). The Efficacy of Red Ginger Fraction (*Zingiber officinale* Roscoe var. *rubrum*) as Insecticidal Aedes aegypti. *BioScientia Medicina*, 2, 31. DOI: 10.32539/bsm.v2i2.40.
- Ateyyat, M., Abu-Romman, S., Abu Darwish, M. & Ghabeish, I. (2012). Impact of Flavonoids against Woolly Apple Aphid, Eriosoma lanigerum (Hausmann) and Its Sole Parasitoid, Aphelinus mali (Hald.). Journal of Agricultural Science, 4, 227 – 236. DOI: 10.5539/jas.v4n2p227.
- Baehaki, S. E., Surahmat, E. C., Susetyo, A. & Senn, R. (2017).
  Safety selected insecticides to predators and egg parasitoids of planthoppers in rice ecosystem. *American Journal of Engineering Research*, 6(6), 174 182.
- Cai, Y., Ren, Z., Li, C., Cai, T., Yu, C., Zeng, Q., He, S., Li, J. & Wan, H. (2023). The insecticidal activity and mechanism of tebuconazole on *Nilaparvata lugens* (Stål.). *Pest Management Science*, 79(9), 3141 3148. https://doi.org/https://doi.org/10.1002/ps.7493.
- Chaubey, M. (2011). Insecticidal Properties of Zingiber officinale and Piper cubeba Essential Oils against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Journal of Biologically Active Products from Nature, 1. https://doi.org/10.1080/22311 866.2011.10719098.
- Chen, Y., Bo-wen, Z., Yang, J., Chuan-shan, Z., Tao, L., Guocai, Z. & Guang-sheng, C. (2020). Detoxification, antioxidant, and digestive enzyme activities and gene expression analysis of larvae under carvacrol. *Journal of Asia-Pacific Entomology*, 24. https://doi.org/10.1016/j.aspen.2020.12.014
- Chrzanowski, G., Leszczynski, B., Czerniewicz, P., Sytykiewicz, H., Matok, H., Krzyżanowski, R. & Sempruch, C. (2012). Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (*Sitobion avenae* F.) development. *Crop Protection*, *35*, 71 77. https://doi.org/10.1016/j.cro-pro.2012.01.005.
- Hermawan, W., Erawan, E. S. & Hadiansyah, C. (2010). The Effect of Andrographolide Antifidan on the Digestive Gland Activity of Plutella xylostella L. Larvae. *Bionatura*, 12(1), 50 56
- Jebur, H. A. & Almaaeny, H. F. (2018). Evaluating of Indirect So-

- lar Dryer Efficient Performance and It's Impact on Some Medical Plants Activity. *The Iraqi Journal of Agricultural Science*, 49(3), 353 359. https://doi.org/10.36103/ijas.v49i3.104.
- Listihani, L., Ariati, P. E. P., Yuniti, I. G. A. D. & Selangga, D. G. W. (2022). The brown planthopper (*Nilaparvata lugens*) attack and its genetic diversity on rice in Bali, Indonesia. *Biodiversitas Journal of Biological Diversity*, 23(9), 4696 4704. DOI: 10.13057/biodiv/d230936.
- Liu, X., Xi, K., Wang, Y., Ma, J., Huang, X., Liu, R., Cai, X., Zhu, Y., Yin, J. & Jia, Q. (2022). Evaluation of the contact toxicity and physiological mechanisms of ginger (*Zingiber officinale*) shoot extract and selected major constituent compounds against *Melanaphis sorghi* Theobald. *Horticulturae*, 8(10), 944. DOI: 10.3390/horticulturae8100944.
- Macwan, S., Dabhi, B., Aparnathi, K. & Prajapati, J. (2016). Essential Oils of Herbs and Spices: Their Antimicrobial Activity and Application in Preservation of Food. *International Journal of Current Microbiology and Applied Sciences*, 5, 885 901. https://doi.org/10.20546/ijcmas.2016.505.092.
- Madreseh-Ghahfarokhi, S., Pirali, Y., & Dehghani-Samani, A. (2018). The insecticidal and repellent activity of ginger (*Zingiber officinale*) and eucalyptus (*Eucalyptus globulus*) essential oils against Culex theileri Theobald, 1903 (Diptera: Culicidae). *Annals of Parasitology*, 64(4). DOI: 10.17420/ap6404.171.
- **Mazid, M., Khan, T. A. & Mohammad, F.** (2011). Role of secondary metabolites in defense mechanisms of plants. *Biology and Medicine*, 3(2), 232 249.
- Miladi, M., Khemais, A., Ben Hamouda, A., Boughattas, I., Mhafdhi, M., Acheuk, F. & Ben Halima, M. (2019). Physiological, histopathological and cellular immune effects of *Pergularia tomentosa* extract on *Locusta migratoria* nymphs, 2 13. https://doi.org/10.1016/S2095-3119(19)62704-8.
- Miranti, M. & Fatiqin, A. (2018). The Potential of Red Ginger (Zingiber officinale Rosc) Extract as a Larvicide for Aedes aegypti. *Proceedings of the National Seminar on Applied Science and Technology*, 2, 50. DOI: 10.24843/WSNF.2022.
- Moreira da Silva, I., Alvarenga Soares, M., de Souza Tavares, W., Dos Santos, A., Serrão, J. E., José Vinha Zanuncio, A., Frederico Wilcken, C., Cola Zanuncio, J. & Sigueyuki Sediyama, C. (2020). Toxicity of essential oils to *Diaphania hyalinata* (Lepidoptera: Crambidae) and selectivity to its parasitoid *Trichospilus pupivorus* (Hymenoptera: Eulophidae). *Journal of Economic Entomology*, 113(5), 2399 2406. DOI: 10.1093/jee/toaa172.
- Munar, A., Widihastuty, W., Susanti, R., Hanafi, M. & Bangun, I. H. (2023). Increasing mustard (*Brassica juncea* L.) yields through exposure sound and preventive pest management based on refugia plants. *Agro Bali: Agricultural Journal*, 6(2), 264 277. DOI: 10.37637/ab.v6i2.1219.
- Nath, U., Puzari, A. & Jamir, T. (2024). Toxicological Assessment of Synthetic Pesticides on Physiology of *Phaseolus vulgaris* L. and *Pisum sativum* L. Along with Their Correlation to Health Hazards: A Case Study in South-West Nagaland, India. *Journal* of the Saudi Society of Agricultural Sciences, 23(4), 300 – 311.
- Ohsawa, K. (2000). Inhibition of Feeding Activity of Plutella xylostella (L.) Larvae (Lepidoptera: Yponomeutidae) Treated with Swietenia mahogani Jacq. (Meliaceae) Seed Extract. Bule-

- tin Hama dan Penyakit Tumbuhan, 12(1), 27 32.
- Ong, M., Chomistek, N., Dayment, H., Goerzen, W. & Baines, D. (2020). Insecticidal activity of plant powders against the parasitoid, *Pteromalus venustus*, and its host, the alfalfa leafcutting bee. *Insects*, 11(6), 359. DOI: 10.3390/insects11060359.
- Othman, B. A. & Kakey, E. S. (2021). Pesticides bioaccumulation and their soil pollutant effect. *Iraqi Journal of Agricultural Sciences*, 52(1), 36 47. https://doi.org/10.36103/ijas. v52i1.1234.
- Palla, F., Bruno, M., Mercurio, F., Tantillo, A. & Rotolo, V. (2020). Essential oils as natural biocides in conservation of cultural heritage. *Molecules*, 25(3), 730. DOI: 10.3390/molecules25030730.
- Putri, D. A. (2014). The influence of extraction and concentration methods on the antibacterial activity of red ginger (Zingiber officinale var rubrum) against Escherichia coli. *Thesis. Universi*tas Bengkulu. Bengkulu.
- Sianipar, M. S., Purnama, A., Santosa, E., Soesilohadi, R. C. H., Natawigena, W. D., Susniahti, N. & Primasongko, A. (2017). Population of Brown Planthopper (Nilaparva lugens Stal), diversity of natural enemies, predators and parasitoids in lowland rice fields in Indramayu district. *Agrologia*, 6(1), 44 – 53. DOI: 10.30598/a.v6i1.245.
- **Simmonds, M.** (2003). Flavonoid-insect interactions: Recent advances in our knowledge. *Phytochemistry*, *64*, 21 30. https://doi.org/10.1016/S0031-9422(03)00293-0.
- Singkoh, M. & Katili, D. Y. (2019). The dangerous of synthetic pesticides (awareness campaign and training for women in Koka village, Tombulu Subdistrict, Minahasa District). *JPAI:*Jurnal Perempuan Dan Anak Indonesia, I(1), 5 12. https://doi.org/DOI: 10.35801/jpai.1.1.2019.24973.
- Strong, L. & Brown, T. (1987). Avermectins in insect control and

- biology: A review. *Bulletin of Entomological Research*, 77, 357 389. https://doi.org/10.1017/S0007485300011846.
- Sutriadi, M., Harsanti, E., Wahyuni, S. & Wihardjaka, A. (2020). Plant-based pesticides: Prospects for eco-friendly pest control. *Jurnal Sumberdaya Lahan*, *13*(2), 89 101. DOI:10.21082/jsdl.v13n2.2019.89-101.
- **Tesari, T., Leksono, A. S. & Mustafa, I.** (2024). Effectiveness of botanical pesticide combined with *Beauveria bassiana* on mortality, nutritional index and fecundity of *Spodoptera litura* L. *Cogent Food & Agriculture*, 10(1), 2320816.
- Walker, K., Bray, J., Lehman, M. & Lentz, A. (2014). Effects of host plant phenolic acids and nutrient status on oviposition and feeding of the cabbage white butterfly, *Pieris rapae. BIOS*, 85. https://doi.org/10.1893/0005-3155-85.2.95.
- Xin, J., Yu, W., Yi, X., Gao, J.-P., GAO, X. & Zeng, X. (2019). Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, *Sitobion avenae* (F.) and *Rhopalosiphum padi* (L.). *Journal of Integrative Agriculture*, 18(7), 1613 1623.
- Yuandita, E. (2018). The Effect of Various Concentrations of Ginger Rhizome Extract (Zingiber officinale) as a Natural Insecticide on the Mortality of Rice Bugs (Leptocorisa oratorius). *Thesis. Universitas Islam Negeri Mataram. Mataram.*
- Zarkani, A. & Prijono, D. (2009). Insecticidal effectiveness of Piper retrofractum and Tephrosia vogelii extracts against Crocidolomia pavonana and Plutella xylostella and the safety of the extracts to Dialegma semiclausum. Journal of ISSAAS [International Society for Southeast Asian Agricultural Sciences] (Philippines). DOI: 10.24198/cropsaver.v3i2.31305.
- Zhang, W., McAuslane, H. J. & Schuster, D. J. (2004). Repellency of ginger oil to *Bemisia argentifolii* (Homoptera: Aleyrodidae) on tomato. *Journal of Economic Entomology*, 97(4), 1310 1318. DOI: 10.1603/0022-0493-97.4.1310.

Received: December, 18, 2023; Approved: May, 05, 2024; Published: October, 2025