Soil solarization and biosolarization for controlling crown and root rot disease complex of greenhouse tomato under hysteretic soil conditions

Tzenko D. Vatchev

Agricultural Academy, Institute of Soil Science, Agro-Technologies and Plant Protection "Nikola Poushkarov", Plant Protection Department, 2230 Sofia, Bulgaria *Corresponding author: vatchevtzenko@yahoo.com

Abstract

Vatchev, Tz. D. (2025). Soil solarization and biosolarization for controlling crown and root rot disease complex of greenhouse tomato under hysteretic soil conditions. *Bulg. J. Agric. Sci.*, 31(5), 873–886

This study revealed the effectiveness of pre-plant soil solarization and biosolarization against the crown and root rot disease complex of greenhouse tomatoes in soils "locked in" by hysteretic performance as a result of multiple applications of broad-spectrum disinfestation methods, which are non-selective to indigenous soil microbial communities. Greenhouse pot experiments were conducted using naturally infested soil containing the principal pathogen, Fusarium oxysporum f.sp. radicis-lycopersici and associated species, including Colletotrichum coccodes, Fusarium solani, Pyrenochaeta lycopersici, Rhizoctonia solani AG 4 and AG 6, Sclerotinia sclerotiorum, Pythium spp., and Phytophthora spp. Soil was collected from a tomato production glasshouse with a long history of disease, where annual chemical soil fumigation or heat steaming had ceased to have a positive effect on plant health or yields. Soil was filled into transparent polyethylene bags, either with or without incorporation, at different rates of fresh tomato residues cut into pieces 2-4 cm in length. The bags were left open (untreated controls) or tightly closed and exposed to the sun for 7 to 30 days. Treated and untreated soils were transferred to plastic pots, along with tomato plants. Ideals were cultivated for 75 days. Thirty-day solarization reduced the severity of crown and root rot by 40.9%. Biosolarization with the addition of tomato-crop residues at a maximum rate of 100 g L⁻¹ soil, followed by 30-day solarization, provided the highest level of disease control – 52.5%. The incorporation of fresh tomato crop residues without subsequent solar heating had no disease-modifying effect or led to an increase in disease symptoms. No follow-up disease-suppressive effect was observed during a second cropping cycle in the same soils. However, both ecologically benign methods have demonstrated that they can break the tendency of the boomerang effect and overcome the condition of hysteresis in soil ecosystems subjected to pulse disturbances by drastic, pathogen-eradicating treatments.

Keywords: complex etiology; associated pathogens; soil disinfestation; buffering capacity; resilience; hysteresis

Introduction

Crown and root disease complex is the most economically crucial biological constraint to the production of greenhouse tomatoes in Bulgaria and elsewhere in the World. The disease is particularly destructive in soil-based systems, including both glass- and plastic greenhouses, with a relatively long history of intensive vegetable growing and tomato cultivation in monoculture. A shifting range of major

soilborne fungal and fungal-like pathogens have been found associated with the crown and root rot of tomato, including Fusarium oxysporum Schlechtend.: Fr. f. sp. radicis-lycopersici Jarvis and Shoemaker (FORL), Colletotrichum coccodes (Wallr.) Hughes, Fusarium solani (Mart.) Sacc., Pyrenochaeta lycopersici Schneider and Gerlach, Rhizoctonia solani Kühn AG-4 and AG-6, Sclerotinia sclerotiorum (Lib..) de Bary, Pythium aphanidermatum (Edson) Fitzp., P. ultimum Trow, Phytophthora nicotianae var. nicotianae

Breda de Haan, *P. capsici* Leonian, other *Fusarium* spp. and *Oomycetes* (Vatchev, 1995; 2013; 2016). The disease syndrome is primarily characterized by symptoms and signs of Fusarium crown and root rot (FCRR), caused by FORL, the most prevalent soilborne pathogen affecting tomatoes in the country. Although FORL has been reported as the dominant causal agent associated with the crown and root rot disease complex, each of the other aforementioned fungal and fungal-like pathogens appears to have a significant role in the complex etiology of the disease (Vatchev, 1995, 2013).

In most cases, the inocula of all the pathogens coexist in the soil before planting. Therefore, pre-plant soil disinfestation has been recognized as a key preventive strategy for managing the disease in tomato production. Although chemical fumigation and steaming have been found to effectively reduce soilborne pathogens (Chellemi et a., 1994; Ozbay and Newman, 2004), since the first reported attempts to control Fusarium crown and root rot of tomatoes, evidence has accumulated that the disease becomes more severe in either steam "sterilized" or chemically fumigated soils (Farley et al., 1975; Jarvis et al., 1975; Jarvis, 1988). Convincing arguments were provided that as a result of such eradicative treatments, populations of soil microbial competitors and antagonists were drastically reduced, which led to rapid reinvasion of the treated soil by the airborne-dispersed causal pathogen, and was followed by complete disease control failure (Jarvis et al., 1977; Rowe et al., 1977; Rowe and Farley, 1978; Marois and Mitchell, 1981; McGovern and McSorley, 1997). Notwithstanding these findings, for the next three decades, eradication approaches such as pre-planting soil fumigation or heat treatment through soil steaming were routinely recommended and widely applied in attempts to control certain soilborne diseases and pests in tomato production (McGovern et al., 1998; Gilreath et al., 2005).

Notably, earlier studies (Kreutzer, 1960; Altman et al., 1970; Baker and Cook, 1974; Bollen, 1974) as well as more recent works (Chen et al., 1991; Katan and DeVay, 1991; Wing et al., 1995) reported an increase in severity of various soilborne diseases in response to broad-spectrum chemical fumigation or steam heating of pathogen-infested soils. The phenomenon has become known as "disease accentuation" or the "boomerang effect" and has been well established in plant pathology, as well as in nematology literature. It has been attributed to drastic perturbation and dramatic decrease in populations of non-target indigenous and antagonistic soil microbiota, which in turn creates a partial or near "biological vacuum" in treated soils As a result, a reinvasion and rapid build-up of plant pathogenic populations have been observed (Cook and Baker, 1983; Van Bruggen et al., 2006; Domínguez-Mendoza et al., 2014).

Our previous research and observations comprising more than 70 greenhouse tomato production units (glass-, net- or plastic-covered structures) in the country and beyond established that recurrent eradicative treatments - three to four in succession, performed over eight to ten years to the same greenhouse soil, irreversibly and permanently eliminated biological buffering capacity or resilience (Szabolcs, 1994) of soil microbial communities against reinvasion of the soil (Baker, 1957) by pathogens associated with crown and root rot disease complex of tomato (Vatchev, 2004; 2016). Moreover, while after the first, the second and the third consecutive treatment, the soil still had the natural biological capacity to counteract the invasion and recolonization by pathogens, and to delay the onset of the disease by three, two and one year, respectively, any subsequent treatments failed to suppress or retard the disease outbreaks and to prevent crop losses during the cropping season to follow (see discussion section below, Vatchev, 2016). Under these circumstances, the level of disease suppression remained critically low. It did not recover within several consecutive years, even after discontinuing the repetitive applications of biocidal means of soil treatment. Arguments were advanced that, in response to the repetitive applications of non-selective soil disinfestation methods, a critical condition known as hysteresis (Lal, 1997; Wilson and Tisdell, 2001) occurred in the soil ecosystem. The hysteresis condition manifested as a highly disease-conducive environment, in which resident microbial communities involved in natural disease suppression were unable to recover even after the termination of pathogen-eradicative treatments. Generally, hysteresis reflects the inability of a system to recover to its original state after perturbations entirely or refers to the slow recovery of the system's functioning once the source of the disturbance is no longer present (Lal, 1997; Seybold et al., 1999; Valone et al., 2002; Potts et al., 2006; Baer et al., 2012). In a broad sense, hysteresis has also been referred to as a "memory phenomenon" (Von Bertalanffy, 1968) and a "path-dependent process," meaning that history and previous conditions influence the system's present state and its future development (Lal, 1997; Jørgensen, 2002; Grandy et al., 2012).

In our previous research, as well as in the current study, the condition of hysteresis has been characterized by a complete lack of control over crown and root rot of tomatoes, despite any prior treatments aimed at ensuring the total eradication of plant pathogens from the soil (Vatchev, 2016). By previous studies on sustainable management of ecosystems showing hysteresis (Seybold et al., 1999; Scheffer et al., 2001; Wilson and Tisdell, 2001; Grandy et al., 2012; Song et al., 2015), we postulated that a shift from total eradication approaches to more selective and biologically-based disin-

festation strategies would help the hysteretic soil ecosystem to recover its biological buffering capacity. This should keep the disease under control.

The efficiency of soil solarization, a process based on capturing and passively accumulating solar energy in treated soil, may be significantly affected by various ambient and weather conditions (Stapleton, 2000, 2016). To enhance the effectiveness of solar treatment and ensure the longevity of the results, an alternative approach combining solarization with the application of various organic soil amendments has been recently developed. This approach has been successfully applied in many crop production systems (Stapleton, 2000; Ros et al., 2008; Gamliel and van Bruggen, 2016), and has been recently referred to as "biosolarization" (Stapleton et al., 2016; Birthisel et al., 2019). The authors used different yet semantically related terms to depict a disinfestation technique which implies the incorporation to soil of raw organic materials or byproducts (Blok et al., 2000; Stapleton, 2000; Strauss and Kluepfel, 2015) as a C source followed by irrigation, covering the treated soil with transparent plastic film, without (Núñez-Zofio et al., 2010; Strauss and Kluepfel, 2015) or with additional exposure to sun for a defined period (Butler et al., 2014), e.g. 3-6 weeks (Gamliel and van Bruggen, 2016).

To overcome constraints of tomato production, soil solarization and biosolarization have been widely used as more ecologically benign alternatives, pursuing reduction of soilborne pathogens (Lombardo et al., 2012; Momma et al., 2013; Gamliel and van Bruggen, 2016; Paudel et al., 2018; Testen et al., 2021), plant-parasitic nematodes (Elmore et al., 1997; Kaşkavalci, 2007; Oka et al., 2007), insect pests and weeds (Katan, 1981; DeVay and Katan, 1991; Lombardo et al., 2012). Additionally, both methods exert a less harmful impact on the indigenous soil microbiota (Wang et al., 2021).

To date, there are no published articles on the potential of these ecologically more benign soil disinfestation methods to control plant pathogens in soils, where multiple applications of drastic sterilization methods have given rise to a boomerang effect, subsequently leading the soil ecosystem to hysteresis. Neither are there any reports on the performance of soil solarization or biofumigation for controlling the crown and root rot disease complex of tomato under those ecological circumstances. Furthermore, it has been demonstrated that the suppressive effect of solarization is not limited to the initial growing season following treatment and, in some cases, may last more than a year (Katan et al., 1983; Klein et al., 2012; Özaslan et al., 2015). Little experimental work has been done to substantiate these findings.

The objective of this study was to evaluate the effectiveness of soil solarization (applied alone) and biosolarization

with raw tomato crop residues as a soil amendment for controlling the crown and root rot disease complex of tomato. The evaluations were carried out under soil conditions of hysteresis, characterized by a decline in disease control after multiple applications of eradicative biocidal treatments to the soil. Another objective of the study was to assess the duration of disease control achieved by the evaluated soil disinfestation treatments under the aforementioned conditions.

Materials and Methods

About the objectives of the study, three individual experiments were carried out: first, to evaluate the effectiveness of different periods of soil solarization (experiment 1); second, to compare the effects of solarization and biosolarization (experiment 2) and the third, to determine the duration of the protection provided by the two disinfestation practices by planting a second tomato crop in the same soils (experiment 3).

Soil origin and condition

The soil used in the present study was collected from a commercial greenhouse of Rosella Ltd in Simitli (41°53′18.70″N and 23°06′31.71″E), Blagoevgrad District, with a cropping history of more than 35 years, including tomatoes as a primary winter crop and cucumbers as a short summer crop. The texture of the soil was coarse sandy clay loam, with 53.0% sand, 38.3% clay, 9.7% silt, 0.3% organic matter, and a pH of 7.04. The greenhouse had a long history of severe crown and root rot of tomato. Our preliminary observations revealed that the soil was "naturally" infested, although not on the same frequency, with F. oxysporum radicis-lycopersici (FORL), Colletotrichum coccodes, Pyrenochaeta lycopersici, Rhizoctonia solani AG 4 and AG 6, Sclerotinia sclerotiorum, Pvthium aphanidermatum, P. ultimum, Phytophthora nicotianae var. nicotianae (Vatchev, 2016). The greenhouse soil had been frequently steam-sterilized at nearly 100°C in the past or chemically fumigated using various formulations of methyl bromide-chloropicrin mixtures, mixtures of 1,3-dichloropropene and 1,2-dichloropropane (DD), and metam sodium. According to records provided by greenhouse growers (Z. Uzunova, personal communication), these preplant biocidal treatments initially gave a relatively good level of control over root diseases in greenhouse tomatoes. Later, typical of hysteresis phenomena, a decline in disease control associated with eradicative soil disinfestation was consistently observed. For 12 consecutive years prior to the onset of this study, the greenhouse soil was annually fumigated with broad-spectrum methyl bromide-chloropicrin mixtures, considered the most effective soil fumigant, but with no positive impact on plant health or yields. A dou-

ble-crop system had been implemented for years, utilizing tomatoes as a primary winter crop and cucumbers as a short summer crop.

Soil sampling and maintenance

For experiments 1 and 2 in this study, at least 20 soil subsamples were collected from 10 separate greenhouse bays at depths of 5 to 20 cm. Subsamples were thoroughly mixed with a spade (to produce a composite sample), sieved through 20 mm mesh sieves, filled in clean plastic containers, and transported to the experimental greenhouse for immediate experimentation. In one case (the repetition of Experiment 1), the soil was stored for a short period of four days in the shade at 14–16°C prior to the application of soil treatments. For the third experiment, solarized, biosolarized, and untreated soils were obtained from the respective treatments of Experiment 2 and used for further biological testing without any additional treatment.

Soil disinfestation treatments

To test the effectiveness of soil solarization and biosolarization (experiments 1 and 2), the collected soil was filled into 400 µm-thick, 50 × 70 cm transparent polyethylene bags, with 5 L of soil per bag. For experiment 2, tomato residues, predominantly stems and fresh leaves, were obtained from the same greenhouse (Rosella Ltd) by the end of the previous cropping season. The above-ground plant material was cut into small pieces (2-4 cm) (Zanón et al., 2011) and mixed with the soil in four doses: 0, 10, 30, and 100 g L⁻¹ soil, equivalent to 0, 2, 6, and 20 kg m⁻², respectively, in the field. Four replications (plastic bags with or without organic amendment) were prepared for each treatment (Tables 1 and 2). Tap water was added to the soils to achieve approximately 75% of the water-holding capacity. The bags were tightly closed using a heat-sealing packaging machine or self-adhesive packing tape. Solarized and biosolarized bags were placed horizontally on glasshouse benches, forming a soil layer approximately 10 cm thick in each bag, and exposed to the sun for varying periods of solar heating (7, 14, 21, or 30 days). All treatments were performed during the hottest months of the year, late June to July. Untreated controls were similarly prepared but remained open, and together with bags filled with organically amended non-solarized soils, were placed on shaded glasshouse benches. Four replications were used for each treatment, and the treatments were arranged in a randomized complete block design.

Soil temperatures were recorded at a depth of 5 cm using a hand-held soil thermometer to the nearest 0.1°C. Three measurements were made daily at 09:00, 12:00, and 15:00 hours. Soil temperature ranged from 42.0 to 49.2°C

in solar-treated soils and from 28.3 to 32.5°C in the shaded, non-solarized bags.

Disease severity and effectiveness of the soil treatments

To evaluate the effectiveness of the applied methods for controlling the crown and root disease complex of tomato, the soils were transferred to 1-L plastic pots according to the treatments. Pots were arranged in a completely randomized block design on a shaded glasshouse bench. Four high-quality tomato seeds (c. Ideal) were planted in each pot. One week after emergence, seedlings were thinned to one plant of a similar size per pot. For experiment 3, the treated soils from experiment 2 were replanted, thus producing a second successive crop of tomatoes after the applied treatments. Plants were grown in the greenhouse for 75 days, with daytime temperatures ranging from 23.8 to 33.4°C, and were manually watered twice weekly or as needed. Prior to disease severity (DS) evaluation, tomato plants were harvested from the pots, and roots were washed with tap water. Roots and lower stems were evaluated for percentage of rotted or discoloured root tissue using a 0-5 rating scale: 0 = no visiblelesions on the roots, plant is healthy; 1 = traces to 25% of the root surface affected; 2 = 26-50%; 3 = 51 to 75%; 4 = 76 to 100% of the root surface discoloured or covered with necrotic lesions, plant is chlorotic and stunted; and 5 = root systemcompletely decayed, internal crown discoloration, stem base covered with necrotic lesions, wilted or dead plant, for each treatment disease index was calculated as an average value of disease severity assessed on roots and lower stems of all the evaluated plants (Vatchev, 2016). To confirm that the disease symptoms were due to pathogens associated with the crown and root rot disease complex, isolations from symptomatic plant roots collected randomly from each treatment at the end of the experiments were routinely performed on WA, acidified PDA, and OA media.

The effectiveness (E%) of each soil treatment was calculated on the base of disease severity index values using Abbott's formula (Abbott, 1925) as follows:

$$E\% = [1 - (X/Y)] \times 100,$$

where *X* corresponds to the disease severity index in a treated soil and *Y* corresponds to the disease severity index in the untreated control soil.

Statistical analyses

Each of experiments 1 and 2 was repeated in two successive years. The independent repetitions yielded similar results. Separate analyses of each trial revealed homogeneous variance of the experimental error across repetitions; therefore, the data from the repeated trials were combined

for analysis. The resulting data sets were analyzed using analysis of variance, with an F-test for the significance of the treatment means, and Least Significant Difference (LSD) values were computed at $P \leq 0.05$ (Gardiner, 1997). Where applicable, treatment means were separated by Duncan's multiple range test ($P \leq 0.05$, Duncan, 1955). Experiment 3 was repeated once with similar results. The results from a single representative experimental trial are shown. All analyses were performed with IBM SPSS Statistics version 19.0 for Windows.

Results and Discussion

Disease severity and effectiveness of the soil treatments Experiment 1

The results presented in Table 1 clearly show a significant (P < 0.05) reduction in crown and root rot severity on plants grown in soils solarized for 21 and 30 days as compared to the untreated control. The application of soil solarization for 30 days yielded the best disease control. The mean effectiveness of this treatment -40.9%, calculated according to Abbott's formula (Abbott, 1925) - was higher than the level of disease control achieved by 21 days of solarization -27.7%. Solar heat treatments for 7 and 14 days reduced the mean values of DSI compared to the untreated control soil, but the difference was not significant.

Table 1. Effects of different periods of soil solarization on severity of crown and root rot disease complex of tomato

No	Treatment	Disease	Level of
		Severity Index	Disease
		(0-5) ^a	Control (%)°
1	Untreated shaded control	2.20 a ^b	_
2	Solarization for 7 days	1.97 a	10.5
3	Solarization for 14 days	1.92 a	12.7
4	Solarization for 21 days	1.59 b	27.7
5	Solarization for 30 days	1.30 с	40.9

 $[\]overline{F} = 2.71$; LSD_{0.05} = 0.256.

Experiment 2

The addition of fresh tomato residues as an organic amendment at 10 g and 30 g per liter of soil resulted in a

reduction of disease severity by 20.3% and 16.3%, respectively, compared with the control; however, the effect was not statistically significant (Table 2). The highest disease severity was observed in the treatment that incorporated the highest amount (100 g) of tomato residues per liter of soil. In this treatment, the disease rating was significantly higher by 44.5% than that recorded in the untreated control. Like the previous experiment, soil solarization alone, after 30 days, resulted in a significant reduction of root and crown rot disease severity by 37.3% compared to non-solarized, non-amended soil. Higher disease control levels were recorded in each treatment that received fresh organic amendment, followed by 30 days of solar heating. Disease index values were reduced by 44.9% to 52.5%, yet were not statistically different from those in the treatment with solarization alone. Nevertheless, the best result among the tested alternatives was obtained after applying 100 g of tomato residues per liter of soil, combined with solarization.

Table 2. Effects of organic amendments, soil solarization and combinations of both on severity of crown and root rot disease on complex of tomato

№	Treatment	Disease Severity Index (0–5) ^a	Level of Disease Control (%) ^c
1	Untreated control	2.63 b ^b	-
2	Tomato residues 10 g L ⁻¹ soil (2 kg m ⁻²)	2.15 b	20.2
3	Tomato residues 30 g L ⁻¹ soil (6 kg m ⁻²)	2.20 b	16.3
4	Tomato residues 100 g L ⁻¹ soil (20 kg m ⁻²)	3.80 a	-44.5
5	Solarization for 30 days	1.65 c	37.3
6	Tomato residues 10 g L ⁻¹ soil (2 kg m ⁻²) + Solarization for 30 days	1.27 c	51.7
7	Tomato residues 30 g L ⁻¹ soil (6 kg m ⁻²) + Solarization for 30 days	1.45 c	44.9
8	Tomato residues 100 g L ⁻¹ soil (20 kg m ⁻²) + Solarization for 30 days	1.25 c	52.5

F = 10.61; $LSD_{0.05} = 0.49$.

 $^{^{\}mathrm{a}}$ For each treatment disease index (DSI) was calculated as an average value of disease severity (DS) assessed on 0-5 rating scale, where $0 = \mathrm{no}$ visible lesions on the roots, plant is healthy and $5 = \mathrm{root}$ system completely decayed, internal crown discoloration, stem base covered with necrotic lesions, wilted or dead plant.

 $^{^{}b}$ Values of disease severity index (DSI) followed by different letters are significantly different at $P \le 0.05$ according to Duncan's multiple range test.

^c Effectiveness (disease control level) of each treatment was calculated on the base of the disease index value using the Abbott's formula.

^aFor each treatment disease index (DSI) was calculated as an average value of disease severity (DS) assessed on 0-5 rating scale, where 0 = no visible lesions on the roots, plant is healthy and 5 = root system completely decayed, internal crown discoloration, stem base covered with necrotic lesions, wilted or dead plant.

 $[^]b$ Values of disease severity index (DSI) followed by different letters are significantly different at $P \le 0.05$ according to Duncan's multiple range test.

^c Effectiveness (disease control level) of each treatment was calculated on the base of the disease index value using the Abbott's formula. Minus sign indicates a higher disease severity index compared to the untreated control.

Experiment 3

High levels of the crown and root rot, comparable with those in the untreated control, were observed at the end of the second cultivation of tomato plants in all treated soils (Table 3). Disease severity ratings on roots and basal stems of plants grown in non-solarized amended soils and non-amended solarized soils did not differ statistically from those recorded in the control soil, whether amended or solarized. A statistically significant reduction in disease severity ratings – from 12.7% to 16.7% – was still demonstrated in the biosolarized soils.

Table 3. Effects of organic amendments, soil solarization and combinations of both on severity of crown and root rot disease complex in the second successive cultivation of tomato plants

No	Treatment	Disease Severity Index (0–5) ^a	Level of Disease Control (%) ^c
1	Untreated control	3.78 a ^b	_
2	Tomato residues 10 g L ⁻¹ soil (2 kg m ⁻²)	3.81 a	-0.8
3	Tomato residues 30 g L ⁻¹ soil (6 kg m ⁻²)	3.75 a	0.8
4	Tomato residues 100 g L ⁻¹ soil (20 kg m ⁻²)	3.89 a	-2.9
5	Solarization for 30 days	3.74 a	1.1
6	Tomato residues 10 g L ⁻¹ soil (2 kg m ⁻²) + Solarization for 30 days	3.30 b	12.7
7	Tomato residues 30 g L ⁻¹ soil (6 kg m ⁻²) + Solarization for 30 days	3.21 b	15.1
8	Tomato residues 100 g L ⁻¹ soil (20 kg m ⁻²) + Solarization for 30 days	3.15 b	16.7

F = 8.88; LSD_{0.05} = 0.158. Experiment 3 was repeated once with similar results. Since no considerable reduction of the disease was obtained, results from a single representative experimental trial are shown.

The results from this study showed a promising potential of soil solarization and soil biosolarization, the latter combining solarization and incorporation of fresh tomato residues, for the control of crown and root disease complex of tomato in soils "locked in" a hysteretic performance of repeated pathogen-eradicative treatments with broad-spectrum fumigants or steam heating. Both disinfestation methods provided a substantial, although incomplete (partial) disease control in potted tomato plants cultivated in heavily infested, hysteretic soils. These soils have been preliminarily subjected to solar heating in tightly closed plastic bags with or without tomato residues mixed into the soil. The disease control rates in pathogens-infested soils subjected to solarization alone increased significantly with the increase in the treatment period. The control rates reached approximately 40% in the soil that received 30 days of exposure to solar radiation. In all experiments, biosolarization provided higher disease control compared to solarization alone in all comparable treatments. The highest reduction of crown and root rot symptoms (by 52.5%) was achieved in soil receiving the maximum amount of tomato residues – 100 g L⁻¹ soil and then subjected to 30 days of solarization. The levels of disease control observed in all biosolarized soils were statistically similar regardless of the amount of fresh tomato residues incorporated in the infested soil prior to the solarization process.

Our results are by numerous studies which have demonstrated that pre-plant soil solarization both alone or in combination with incorporated raw or composted organic matter, the so called "biosolarization" (Stapleton et al., 2016; Birthisel et al., 2019), significantly reduces soilborne diseases of tomatoes caused either by individual plant pathogens (Ioannou, 2000; Klein et al., 2007; Katan, 2010; Vitale et al., 2011; McGovern, 2015) or complex infections caused by multiple fungal species (Tjamos et al., 1999; Tsitsigiannis et al., 2008; Klein et al., 2011; Lombardo et al., 2012; Testen and Miller, 2018; Testen et al., 2021; Jabnoun-Khiareddine, 2019) and Oomycetes (D'Addabbo et al., 2010; De Corato et al., 2011) or plant parasitic nematodes (Klein et al., 2012). Widely deployed in modern agroecosystems, soil solarization has proven to be ecologically sound (Gamliel and Katan, 2009; Gilardi et al., 2014; Panth et al., 2020) and an economically attractive pre-planting soil disinfestation method (Yaron et al., 1991; Hasing et al., 2004). Solarization is also technologically feasible, compatible with other plant protection strategies, and suitable for integrated pest management programs (Katan and Gamliel, 2010; Kumar et al., 2017). The treatment effects comprise hydrothermal and biological processes in moist soil covered with transparent polyethylene film and exposed to solar radiation (D'Addabbo et al., 2010). The penetrating solar energy trapped in topsoil generates temperatures that are lethal or sublethal to fungal and bacterial plant pathogens (Davis, 1991), phytoparasitic nematodes (Stapleton and Heald, 1991; Klein et al., 2012), insects, and weed seeds (Elmore, 1991; Santos et al., 2006).

^a For each treatment disease index (DSI) was calculated as an average value of disease severity (DS) assessed on 0-5 rating scale, where 0 = no visible lesions on the roots, plant is healthy and 5 = root system completely decayed, internal crown discoloration, stem base covered with necrotic lesions, wilted or dead plant.

 $[^]b$ Values of disease severity index (DSI) followed by different letters are significantly different at $P \le 0.05$ according to Duncan's multiple range test.

^cEffectiveness (disease control level) of each treatment was calculated on the base of the disease index value using the Abbott's formula. Minus sign indicates a higher disease severity index compared to the untreated control.

A few studies have been conducted to date to investigate the potential of tomato crop residues as a carbon source for biosolarization. Zanón and Jordá (2008) successfully eradicated Clavibacter michiganensis subsp. michiganensis by incorporating tomato crop residues into growth substrate (mixture of peat moss and sand), followed by a four-week treatment at a constant temperature of 45°C. Similarly, Ralstonia solanacearum was not detected in the growing medium after six-week treatment at the same conditions (Zanón et al., 2011). Biosolarization using tomato plant debris as a fertilizer positively influenced the yield and fruit quality of greenhouse-grown tomatoes (García-Raya et al., 2019). However, no aspects of plant health were evaluated in the study. Similarly, Mitidieri et al. (2021) effectively controlled a range of soilborne fungal pathogens and nematodes in greenhouse tomato by repeated treatments with soil solarization and biofumigation, the latter utilizing tomato crop residues. In addition to solar heating and anaerobic soil conditions, accumulation of volatile toxic compounds, including alcohols, aliphatic disulfides, aldehydes and organic acids, which can lower soil pH and together with reversible, yet relatively stable shifts in the structure of soil microbial community towards antagonistic anaerobic bacteria and fungi may affect survival of pathogenic organisms and increase the general soil suppressiveness (Momma, 2008; Rosskopf et al., 2015; Van Bruggen et al., 2016; Yang et al., 2021). Results from this work and the literature suggest that soil solarization and biofumigation could be used as singular disease control measures; however, they might require annual soil disinfestations to be performed before each crop cycle. It will also be recommended for the future to optimize their effectiveness by combining disinfestation procedures with other compatible control strategies. In the present study, the use of fresh tomato crop residues as a soil amendment, without subsequent solar heating, had no statistically discernible impact on disease reduction. When incorporated at lower rates, tomato residues had little or no inhibitory effect on the disease. Moreover, when the highest amount of residues (100 g L⁻¹ soil, equivalent to 20 kg m⁻² or 200 t ha⁻¹) was incorporated into disease-infested soil, a significant increase in crown and root rot was observed. The most likely explanation is that the causal pathogens, being also opportunistic or saprophytic colonizers, had taken advantage of the free physical niche and food source provided by the fresh plant residues (Whipps, 1997) or due to an increased saprophytic reproduction where crop residues are not buried by deep ploughing (Dixon and Tilston, 2010). Indeed, that amount of aboveground tomato vegetative mass could hardly be achieved per unit area in tomato cultivation. Piedra Buena (2006) reported that the tomato crop could provide up to 110

t ha⁻¹ (11 kg m⁻²), which is significantly less than the maximum dose used in our experiments. Incorporation of tomato green residues from the previous crop alone may not be consistently effective for controlling crown and root rot. For effective disease management, it must be combined with airtight coverage of the soil for at least 30 days and, if possible, should coincide with the warmest period of the year.

A purpose of this study was also to determine the possible long-term follow-up effects of solarization and biosolarization on hysteretic soil on crown and root rot of tomato. Unlike previous research, which showed that the effects of solarization and biofumigation last more than one year (Özaslan et al., 2015), in this study, neither the effect of solarization nor that of biofumigation lasted to the next cultivation round under the specific conditions described here. Indeed, in the second successive crop of tomatoes following the application of alternative treatments, a statistically significant reduction in the disease was found in the biosolarized soils. However, this treatment effect was too low to justify further data collection.

The effects of the application of organic amendments with solarization, also known as "biosolarization", "biofumigation" or "biodisinfection" (Paulitz and Belanger, 2001; Rosskopf et al., 2015), etc., on physical, chemical, and biological characteristics of soil and the mechanisms that contribute to the disinfestation process are not yet fully understood and require further investigation. Recent studies have highlighted the importance of environmental conditions and technical variables that must be considered during the constant process of solar heating, so as to prevent rapid oxygen depletion and maintain sub-lethal temperatures and low oxidation-reduction potential levels for the duration of the treatment (Block et al., 2000). Also, here are included specific characteristics of plastic films (Katan and Gamliel, 2010; Gamliel and van Bruggen, 2016), high soil moisture content of airtight covered soil (Stapleton, 2000; Momma et al., 2013), type and amount of the organic materials or species of the crop whose residues are added to the treated soil (Di Gioia et al., 2017; Liu et al., 2019), size of fragments incorporated, depth and distribution in soil (Gamliel and van Bruggen, 2016), etc. These aspects are out of the scope of this work. Unquestionably, both soil disinfestation methods studied here represent different, biologically based, and more eco-friendly approaches compared to biocidal fumigation or steam sterilization of soil. Further research is needed to explain the lack of a prolonged disease suppressive effect, e.g., for more than one cropping season, and to elucidate the possible role of a preliminary hysteretic condition in soil response to the application of environmentally benign disinfestation alternatives.

As can be seen from the literature review, numerous indepth studies have examined and documented the effects of solarization or biosolarization on individual soilborne pathogens in tomatoes and many other crops. The current study is among the few that identify and potentially target the overall components of the causal pathogen complex inciting crown and root rot in greenhouse tomato, rather than focusing on individual species involved in the plant-pathogenic community. This rather holistic approach (Mannaa and Seo, 2021) would prevent the risk of the so-called "disease trading" or the change in the dominant pathogen (Kreutzer, 1960) within the disease complex – a phenomenon that inadequate species-specific disease control efforts might bring about. Furthermore, targeting all co-existing pathogenic species that may interact and shape pathogen community structures in the field (Fang et al., 2021) is, in my view, likely to be the only feasible manner that can provide a realistic assessment of the effectiveness of the employed disease control strategies. The concept of a multiple or multicomponent etiology of certain complex plant diseases and disorders, resulting from simultaneous infections of the same host plant by two or more pathogen species, is not new. Complex etiological considerations were first published in 1931 by Fawcett (Fawcett, 1931), who urged plant pathologists to conduct experimentation with known associations of pathogens. This concept has been further elaborated under different terms and implemented by Stakman (1964), Powell (1971), Wallace (1978), but only in the recent years has been brought into sharp focus by the publications of Khan and Dasgupta (1993), Mazzola (1998), Le May et al. (2009), Tewoldemedhin et al. (2011), Lamichhane and Venturi (2015), Wheeler et al. (2019), Wolfgang et al. (2019), Mazzola et al. (2020), Zitnick-Anderson et al. (2020), Bozoğlu et al. (2022) and many others, giving rise to a transition of Plant Pathology from the "one pathogen-one disease hypothesis" to the "pathobiome paradigm" (Mannaa and Seo, 2021).

Repetitive soil eradicative disinfestation practices, which involve the use of highly toxic, broad-spectrum chemical fumigants or heat steaming at nearly 100°C, are a drastic, often annually recurring pulse disturbance (Holling, 1973; Shade et al., 2012) to the structure and functional activity of soil microbial communities. The microbial ecology literature encompasses several concepts that may be closely related to soil disinfestation as a source of direct disturbance to the soil microbial environment and its buffering capacity. The latter is also defined as the soil's resilience to biological stress (Szabolcs, 1994). The concept of biological buffering capacity has been summarized by Seybold et al. (1999), Blanco and Lal (2008), and oth-

ers as the ability of soil (ecosystem) to resist and absorb perturbations, as well as the ability to restore itself and to recover its functional and structural integrity after disturbance. Simultaneously, in the scientific literature, this definition has been split into two terms that account for the "resistance" and the "resilience" of soil microbiota. These occur most often and can serve as categories for the impact of disinfestation procedures on the soil ecosystem and its functions, such as the response to plant pathogen (re-) invasion and disease suppressive potential. From Holling (1973) and Pimm (1984) via Szabolcs (1994) and many others to the present day (Gullino et al., 2022; Smith et al., 2022), ecosystem resistance and resilience have been defined in different ways and from different perspectives, primarily conceptually rather than experientially. Resistance is generally defined as the inherent capacity of the system to withstand disturbance, whereas the term resilience applies to a "self-healing" capacity of an ecosystem after perturbation (Kibblewhite et al., 2008). Resilience has also been referred to as the capacity to maintain or recover its functional and structural integrity in response to adverse changes and disturbances or to bounce back to its original state after a disturbance (Pimm, 1984; Seybold et al., 1999; Shade et al., 2012; Ludwig et al., 2018). Further specifications on the definition of "resilience" have been provided by again splitting the term into "engineering resilience" and "ecological resilience", for which even more specific and precise definitions have been proposed by Martin et al. (2019). No matter which definitions we choose to stick with, the multiple pulse (short-term) disturbance to the soil ecosystem (sourced by recurrent soil fumigation and steam sterilization) irreversibly reduces or eliminates biological factors that confer the benefits of disease suppression, thus permanently rendering the soil highly conducive to crown and root rot of greenhouse tomato. Moreover, based on this fact, I argue that the resistance or counteractive capacity of the soil microbiome to function as an environmental buffer against soilborne plant pathogens is compromised to the point of insufficient recovery. Similarly, the resilience of soil microbial communities is evident, as no recovery process, whether faster or slower (Seybold et al., 1999; Shade et al., 2012), of biologically based disease suppression, whether general or specific, was observed before or after the annual eradicative disinfestation treatments to the soil were terminated.

Briefly, in this article, the "hysteresis behaviour" is referred to a destroyed soil resistance, meaning (1) an eliminated counteractive capacity of soil microbiome to function as an environmental buffer against reinvasion and rapid build-up of plant pathogenic populations in treated soil and

(2) a compromised resilience or inability of soil microbial communities to recover their disease suppressive capacity. Both are regarded as a result of multiple pulse disturbances caused by the application of recurring pathogen-eradicative treatments to soil. It is worth noting that more diverse systems are considered more resilient to both natural and anthropogenic perturbations (Kibblewhite et al., 2008). To exacerbate the conditions for greenhouse soils, the recurrent pulse disturbance (resulting from drastic soil treatments) has been combined with and complemented by antecedent press or long-term disturbance (Shade et al., 2012). The latter was caused by the introduction of agriculture itself and, more importantly, by the industrial greenhouse operation as a source of continuous environmental stress and substantial changes in soil microbial communities. Repeated soil disturbances without sufficient recovery imply a hysteretic condition in the soil microbiota, which typically follows ecosystem degradation (Seybold et al., 1999; Grandy et al., 2012). This condition was observed in dozens of tomato-producing greenhouses across the country; all had received recurring treatments with broad-spectrum biocides (chemical fumigants or steam heating) in the years preceding the observation (Vatchev, 2004, 2016; Yanashkov and Vatchev, 2020). Seybold et al. (1997) described a similar, although hypothetical, hysteresis behavior model associated with the loss of soil capacity to recover ("hysteric manner" of soil recovery) resulting from the annual experience of disturbance following the application of a particular cropping system on the same land.

Consistent with previous research (Seybold et al., 1999; Scheffer et al., 2001; Wilson and Tisdell, 2001; Grandy et al., 2012; Song et al., 2015), this study hypothesized that substitution of broad-spectrum eradicative approaches for more ecologically benign soil disinfestation practices can disrupt the tendency towards re-creating patterns of hysteresis within soil microbiome in response to recurrent disturbances by chemical or physical sterilization treatments. The study's findings demonstrated that, in contrast to chemical fumigation and steam heating, which aim to kill or eliminate soilborne pathogens from the soil, the application of soil solarization or biofumigation-significantly reduced disease severity ratings of the crown and root rot disease complex in tomato plants grown in heavily infested soil. This shift in disease response was attributed to the less harmful effect on non-target soil microorganisms. As the same soil had previously exhibited hysteresis behavior in terms of disease control failure due to drastic soil disinfestation, our results indicated that these disinfestation approaches, with a milder effect, managed to change the tendency of the boomerang effect on disease development following drastic

pre-plant soil disinfestations and thus overcome the condition of hysteresis in the soil. Further research is needed to elucidate whether the disease control effect resulted from a temporary reduction in soil inoculum potential or some recovery of microbial buffering capacity, as referred to in soil disease suppression. Indeed, in this study, only partial or incomplete disease control of the crown and root rot disease complex of tomato was observed after single solarization or biosolarization treatment of the pathogen-infested soil, showing hysteresis. Additionally, the positive disease control response was limited to the first cropping round, and disease reduction was not evident in the subsequent tomato crop. Previous publications have covered potential advantages of regular applications of biologically based soil disinfestation approaches (Klein et al., 2012), alone or in integration with other appropriate disease control strategies that might further improve the results from the preplant disinfestation treatments (Vatchev, 2004; Minuto et al., 2006; Jabnoun-Khiareddine et al., 2019).

Conclusions

Soil solarization and biofumigation have proven to be effective and sustainable methods for controlling various soilborne diseases in a range of protected and outdoor crops. They are fully compatible with soil-based tomato cultivation systems in greenhouses. As demonstrated in this paper, the two disinfestation alternatives efficiently reduce the crown and root rot disease complex of tomato under conditions of hysteretic, heavily infested soil, which has repeatedly received drastic pathogen-eradicative treatments in the past with no positive effect on disease prevention and control. Hence, solarization, either alone or in combination with fresh tomato residues added to the soil prior to solar heating, could be successfully applied to control root and lower stem rots of tomatoes caused by a wide range of fungal and fungal-like necrotrophic pathogens under the described conditions of hysteresis or less extreme soil conditions.

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. *Journal of Economic Entomology*, 18, 265 – 267.

Altman, J. (1970). Increased and decreased plant growth responses resulting from soil fumigation. *In:* Root Diseases and Soil-Borne Pathogens. *University of California Press*, Berkley, 216 – 221.

Baer, S., Heneghan, L. & Eviner, V. (2012). Applying Soil Ecological Knowledge to Restore Ecosystem Services. *In:* Soil

- Ecology and Ecosystem Services. Oxford University Press, UK, 377 394.
- **Baker, K. F.** (1957). The U.C. System for Producing Healthy Container-Grown Plants. California Agricultural Experiment Station Manual 23. Berkeley: University of California, 332.
- Baker, K. F. & Cook, R. J. (1974). Biological control of plant pathogens. W. H. Freeman & Company, San Francisco, 433.
- **Blanco, H. & Lal, R.** (2008). Principles of soil conservation and management. *Springer Science + Business Media B. V.*, 617.
- Blok, W. J., Lamers, J. G., Termorshuzen, A. J. & Bollen, G. J. (2000). Control of soil-borne plant pathogens by incorporating fresh organic amendments followed by tarping. *Phytopathology*, 90, 253 259.
- Birthisel, S. K., Smith, G. A., Gavriela M., Mallory, G. M., Hao, J. & Gallandt, E. R. (2019). Effects of field and greenhouse solarization on soil microbiota and weed seeds in the Northeast USA. *Organic Farming*, 5, 66 78.
- **Bollen, G. J.** (1974). Fungal recolonization of heat-treated glasshouse soils. *Agro-Ecosystems* (Amsterdam), 1, 139 155.
- Bozoğlu, T., Dervis, S., Imren, M., Amer, M., Özdemir, F., Paulitz, T. C., Morgounov, A., Dababat, A. & Özer, G. (2022).
 Fungal Pathogens Associated with Crown and Root Rot of Wheat in Central, Eastern, and Southeastern Kazakhstan.
 Journal of Fungi, 8, 417.
- Butler, D. M., Kokalis-Burelle, N., Albano, J. P., McCollum, T. G., Muramoto, J., Shennan, C. & Rosskopf, E. N. (2014). Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. *Plant and Soil*, 378, 1 17. doi: 10.1007/s11104-014-2030-z.
- Butler, D. M., Kokalis-Burelle, N., Muramoto, J., Shennan, C., McCollum, T. G. & Rosskopf, E. N. (2012). Impact of anaerobic soil disinfestation combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. *Crop Protection*, 39, 33 40.
- Chellemi, D. O., Olson, S. M. & Mitchell, D. J. (1994). Effects of soil solarization and fumigation on survival of soilborne pathogens of tomato in Northern Florida. *Plant Disease*, 78, 1167 1172.
- Chen, Y., Gamliel A., Stapleton, J. J. & Aviad, T. (1991). Chemical, physical, and microbiological changes related to plant growth in disinfested soils. *In:* Soil Solarization, *CRC Press*, USA, 103 129.
- Cook, R. J. & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. The American Phytopathol Society, St. Paul, Minnesota, 539.
- D'Addabbo, T., Miccolis, V., Basile, M. & Candido, V. (2010). Soil solarization and sustainable agriculture. *In:* Sociology, Organic farming, Climate change and Soil science. *Sustainable Agriculture Reviews*, 3, Springer, 217 – 274.
- Davis, J. R. (1991). Soil solarization: pathogen and disease control and increases in crop yield and quality: short-and long-term effects and integrated control. *In:* Soil solarization, *CRC Press*, USA, 39 50.
- De Corato, U., Sharma, N., Maccioni, O. & Zimbardi, F. (2011). Suppressiveness of steam exploded biomass of *Mis*-

- canthus sinensis var. giganteus against soil-borne plant pathogens. Crop Protection, 30(3), 246 252.
- Di Gioia, F., Ozores-Hampton, M., Zhao, X., Thomas, J., Wilson, P., Li, Z. N., Hong, J., Albano, J., Swisher, M. & Rosskopf, E. (2017). Anaerobic soil disinfestation impact on soil nutrients dynamics and nitrous oxide emissions in fresh-market tomato. Agriculture, Ecosystem and Environment, 240, 194 205.
- **Dixon, G. R. & Tilston, E. L.** (2010). Soil-Borne Pathogens and Their Interactions with the Soil Environment. *In:* Soil Microbiology and Sustainable Crop Production, © Springer Science + Business Media B.V., 197 271.
- Domínguez-Mendoza, C. A., Bello-López, J. M., Navarro-Noya, Y. E., de León-Lorenzana, A. S., Delgado-Balbuena, L., Gómez-Acata, S., Ruíz-Valdiviezo, V. M., Ramirez-Villanueva, D. A., Luna- Guido, M. & Dendoven, L. (2014). Bacterial community structure in fumigated soil. Soil Biology and Biochemistry, 37, 122 129.
- **Duncan, D. B.** (1955). New multiple range and multiple F tests. *Biometrics*, 11, 1-11.
- **Elmore, C. L.** (1991). Weed control by solarization. *In:* Soil Solarization, *CRC Press*, USA, 61 72.
- Elmore, C. L., Stapleton, J. J., Bell, C. E. & DeVay, J. E. (1997). Soil solarization, a nonpesticidal method for controlling diseases, nematodes and weeds. Division of Agricultural and Natural Resources, University of California, Oakland, California: Vegetable and Information Center, 17.
- **Fawcett, H. S.** (1931). The importance of investigations on the effects of known mixtures of organisms. *Phytopathology*, 21, 545 550.
- Fang, X., Zhang, C., Wang, Z., Duan, T., Yu, B., Ji,a X., Pang,
 J., Ma, L., Wang, Y. & Nan, Z. (2021). Co-infection by Soil-Borne Fungal Pathogens Alters Disease Responses Among
 Diverse Alfalfa Varieties. Frontiers of Microbiology, 12, 664385.
- **Farley, J., Oakes, G. & Jaberg, C.** (1975). A new greenhouse tomato root-rot disease caused by *Fusarium oxysporum*: a preliminary report. in *Greenhouse Vegetable Research-1975*. Ohio Agricultural Research Division Central Research Summary 82, 27 29.
- Gamliel, A. & Katan, J. (2009) Control of plant diseases through solarization. *In:* Disease Control in Crops, Biological and Environmentally-Friendly Approaches. *Wiley-Blackwell*, Oxford 195 – 220.
- **Gamliel, A. & van Bruggen, A. H. C.** (2016). Maintaining soil health for crop production in organic greenhouses. *Scientia Horticulturae*, 208, 120 130.
- García-Raya, P., Ruiz-Olmos, C., Marín-Guirao, J. I., Asensio-Grima, C., Tello-Marquina, J. C. & de Cara-García, M. (2019). Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops. *International Journal of Environmental Research and Public Health*, 16, 279.
- **Gardiner, W. P.** (1997). Statistics for the biosciences: data analysis using minitab software. *Prentice Hall*, London. 416.
- Gilardi, G., Demarchi, S., Gullino, M. L. & Garibaldi, A. (2014). Effect of simulated soil solarization and organic

- amendments on Fusarium wilt of rocket and basil under controlled conditions. *Journal of Phytopathology*, 162(9), 557 566.
- Gilreath, J. P., Motis T. N., Santos, B. M., Noling, J. W., Locascio, S. J., Chellemi, D. O. (2005) Resurgence of soilborne pests in double-cropped cucumber after application of methyl bromide chemical alternatives and solarization in tomato. *HortTechnology*, 15, 797 801.
- **Grandy, A. S., Fraterrigo, J. M. & Billings, S. A.** (2012). Soil ecosystem resilience and recovery. *In:* Soil Ecology and Ecosystem Services. *Oxford University Press*, U.K., 257 376.
- Gullino, M. L., Garibaldi, A., Gamliel, A. & Katan, J. (2022). Soil Disinfestation: From Soil Treatment to Soil and Plant Health. *Plant Disease*, 106, 1541 1554.
- Hasing, J. E., Motsenbocker, C. E. & Monlezun, C. J. (2004).
 Agroeconomic effect of soil solarization on fall-planted lettuce (*Lactuca sativa*). Scientia Horticulturae, 101(3), 223 233.
- **Holling, C. S.** (1973). Resilience and stability of ecological systems. *Annual Review of Ecological Systematics*, 4, 1 23.
- **Ioannou, N.** (2000). Soil solarization as a substitute for methyl bromide fumigation in greenhouse tomato production in Cyprus. *Phytoparasitica*, 28(3), 248 256.
- Jabnoun-Khiareddine, H., Mejdoub-Trabelsi, B., Ben Abdallah, R. A., Abdel-Kareem, F., El-Mohamedy, R. S. R. & Daami-Remadi, M. (2019). Single and combined effects of soil solarization and organic amendments on wilt severity, fungal isolation frequencies and tomato production. *International Journal of Advances in Agriculture Sciences*, 4, 1 12.
- **Jarvis, W. R.** (1988). Fusarium crown and root rot of tomatoes. *Phytoprotection*, 69, 49 64.
- Jarvis, W. R., Thorpe, H. J. & MacNeill, B. H. (1975). A foot and root rot disease of tomato caused by *Fusarium oxysporum*. Canadian Plant Disease Survey, 55, 25 26.
- Jarvis, W. R., Dirks, V. A., Johnson, P. W. & Thorpe, H. J. (1977). No interaction between root-knot nematode and Fusarium foot and root rot of greenhouse tomato. *Plant Disease Reporter*, 61, 251 – 254.
- **Jørgensen**, S. E. (2002). Integration of Ecosystem Theories: A pattern. 3rd ed., *Springer Science* + *Business Media Dordrecht*.
- **Kaşkavalci, G.** (2007). Effects of soil solarization and organic amendment treatments for controlling *Meloidogyne incognita* in tomato cultivars in western Anatolia. *Turkish Journal of Agriculture and Forestry*, 31, 159 167.
- **Katan, J.** (1981). Solar heating (solarization) of soil for control of soil-borne pests. *Annual Review of Phytopathology*, *19*, 211 236.
- **Katan, J.** (2010). Cultural approaches for disease management: Present status and future prospects. *Journal of Plant Pathology*, 92(4), S7 S9.
- **Katan, J. & DeVay, J. E.** (1991). Soil solarization: historical perspectives, and uses. *In*: Soil Solarization. *CRC Press*, USA, 23 37.
- Katan, J., Fishler, G. & Grinstein, A. (1983). Short-Term and Long-Term Effects of Soil Solarization and Crop Sequence on Fusarium-Wilt and Yield of Cotton In Israel. *Phytopathology*, 73(8), 1215 – 1219.

- **Katan, J. & Gamliel, A.** (2010). Soil solarization 30 years on: what lessons have been learned? *In*: Recent Developments in Management of Plant Diseases, Plant Pathology in the 21st Century, *Springer Netherlands*, 265 283.
- Khan, M. W. & Dasgupta, M. K. (1993). The concept of interaction. *In:* Nematode Interactions. © Chapman & Hall, 55 78.
- Kibblewhite, M., Ritz, K. & Swift, M. (2008). Soil health in agricultural systems. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1492), 685 701.
- Klein, E., Katan, J., Austerweil, M. & Gamliel, A. (2007). Controlled laboratory system to study soil solarization and organic amendment effects on plant pathogens. *Phytopathology*, 97, 1476 1483.
- **Klein, E., Katan, J. & Gamliel, A.** (2011). Combining residues of herb crops with soil heating for control of soilborne pathogens in a controlled laboratory system. *Crop Protection*, 30, 368 374.
- **Klein, E., Katan, J. & Gamliel, A.** (2012). Soil suppressiveness to *Meloidogyne javanica* as induced by organic amendments and solarization in greenhouse crops. *Crop Protection*, *39*, 26 32.
- **Kreutzer, W. A.** (1960). Soil treatment. *In:* Plant Pathology, an Advanced Treatise, 3, 431 476. *Academic Press, New York*, USA.
- Kumar, V., Ankush, Tehlan, S. K., Kumar, A. & Priyanka. (2017). Soil solarization: an approach towards sustainable Agriculture. *Innovative Farming*, 2, 126 130.
- **Lal, R.** (1997). Degradation and resilience of soils. *Philosophical Transactions of the Royal Society of London B*, 352, 997 1010
- **Lamichhane, J. R. & Venturi, V.** (2015). Synergisms between microbial pathogens in plant disease complexes: a growing trend. *Frontiers in Plant Science*, 6, 385.
- Le May, C., Potage, G., Andrivon, D., Tivoli, B. & Outreman, Y. (2009). Plant disease complex: antagonism and synergism between pathogens of the Ascochyta blight complex on pea. *Journal of Phytopathology*, 157, 715 721.
- Liu, L. L., Kong, J. J., Cui, H. L., Zhang, J. B., Wang, F. H., Cai, Z. C. & Huang, X. Q. (2019). Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. *Biological Con*trol, 101, 103 – 113.
- **Lombardo, S., Longo, A. M. G., Lo Monaco, A. & Mauromicale, G.** (2012). The effect of soil solarization and fumigation on pests and yields in greenhouse tomatoes. *Crop Protection*, 37, 59 64.
- **Ludwig, M., Wilmes, P. & Schrader, S.** (2018). Measuring soil sustainability via soil resilience. *Science of The Total Environment*, 626, 1484 1493.
- Mannaa, M. & Seo, Y.-S. (2021). Plants under the Attack of Allies: Moving towards the Plant Pathobiome Paradigm. *Plants*, 10, 125.
- **Marois, J. J. & Mitchell, D. J.** (1981). Effects of fumigation and fungal antagonists on the relationship of inoculum density to infection incidence and disease severity in Fusarium crown rot of tomato. *Phytopathology*, 71, 167 170.

- Martin, E. A., Feit, B., Requier, F., Friberg, H. & Jonsson, M. (2019). Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. *Advances in Ecological Research*, 60, 59 123.
- **Mazzola, M.** (1998). Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. *Phytopathology*, 88, 930 938.
- Mazzola, M., Graham, D., Wang, L., Leisso, R. & Hewavitharana, S. S. (2020). Application sequence modulates microbiome composition, plant growth and apple replant disease control efficiency upon integration of anaerobic soil disinfestation and mustard seed meal amendment. Crop Protection, 132, 105125.
- McGovern, R. J. & McSorley, R. (1997). Physical methods of soil sterilization for disease management including soil solarization. *In:* Environmentally Safe Approaches to Crop Disease Control, *CRC Lewis Publishers*, 283 313.
- McGovern, R. J., Vavrina, C. S., Noling, J. W., Datnoff, L. A. & Yonce, H. D. (1998). Evaluation of application methods of metam sodium for management of Fusarium crown and root rot in tomato in southwest Florida. *Plant Disease*, 82, 919 923.
- **McGovern, R. J.** (2015). Management of tomato diseases caused by *Fusarium oxysporum*. *Crop Protection*, 73, 78 92.
- Minuto, A. Spadaro, D., Garibaldi, A. & Gullino, M. L. (2006). Control of soilborne pathogens of tomato using a commercial formulation of *Streptomyces griseoviridis* and solarization. *Crop Protection*, 25, 468 475.
- Mitidieri, M. S., Brambilla, V., Barbieri, M., Piris, E., Celié, R. & Chave, E. (2021). Tomato Crop Health, Yield, and Greenhouse Soil Conditions after 17 Years of Repeated Treatments of Biofumigation and Solarization. *Global Journal of Agricultural Innovation, Research & Development*, 8, 123 139.
- **Momma, N.** (2008). Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. *JARQ*, 42, 7 12.
- Momma, N., Kobara, Y., Uematsu, S., Kita, N. & Shinmura, A. (2013). Development of biological soil disinfestation in Japan. Applied Microbiology and Biotechnology, 97, 3801 – 3809.
- **Núñez-Zofío, M., Garbisu, C. & Larregla, S.** (2010). Application of Organic Amendments Followed by Plastic Mulching for the Control of Phytophthora Root Rot of Pepper in Northern Spain. *Acta Horticulturae*, 883, 353 360.
- Oka, Y., Shapira, N. & Fine, P. (2007). Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. *Crop Protection*, 26, 1556 1565.
- Özaslan, C., Çimen, I., Kizmazi, M. Z., Pirinç, V. & Kara, A. (2015). Determination of long-term effects of consecutive effective fresh chicken manure with solarization and verticillium wilt (*Verticillium dahliae* Klebb) on weed and its control in egg plant. *African Journal of Biotechnology*, 14, 1614 1623.
- Ozbay, N. & Newman, S. (2004). Fusarium crown and root rot of tomato and control methods. *Plant Pathology Journal*, 3, 9-18
- Panth, M., Hassler, S. C. & Baysal-Gurel, F. (2020). Methods

- for management of soilborne diseases in crop production. Agriculture, 10, 16, 1-21.
- Paudel, B. R., Di Gioia, F., Zhao, X., Ozores-Hampton, M., Hong, J. C., Kokalis-Burelle, N., Pisani, C. & Rosskopf, E. N. (2018). Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renewable Agriculture and Food Systems, 3(3), 1 – 12.
- Paulitz, T. C. & Belanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103 – 133.
- Piedra Buena, A., García-Álvarez, A., Díez-Rojo, M. Á. & Bello, A. (2006). Use of crop residues for the control of *Meloidogyne incognita* under laboratory conditions. *Pest Management Science*, 62(10), 919 926.
- **Pimm, S. L.** (1984). The complexity and stability of ecosystems. *Nature*, 307, 321 326.
- Potts D. L., Huxman T. E., Enquist B. J., Weltzin J. F. & Williams D. G. (2006). Resilience and resistance of ecosystem functional response to a precipitation pulse in a semi-arid grassland. *Journal of Ecology*, 94, 23 30.
- **Powell, N. T.** (1971). Interactions between nematodes and fungi in disease complexes. *Annual Review of Phytopathology*, 9, 253 274.
- Ros, M., Garcia, C., Hernandez, M. T., Lacasa, A., Fernandez, P. & Pascual, J. A. (2008). Effects of biosolarization as methyl bromide alternative for *Meloidogyne incognita* control on quality of soil under pepper. *Biology and Fertility of Soils*, 45, 37 44.
- Rosskopf, E. N., Serrano-Pérez, P., Hong, J., Shrestha, U., Del Carmen Rodríguez-Molina, M., Martin, K., Kokalis-Burelle, N.; Shennan, C., Muramoto, J. & Butler, D. (2015). Anaerobic soil disinfestation and soilborne pest management. *In:* Organic Amendments and Soil Suppressiveness in Plant Disease Management, Soil Biology, 46, 277 305 (Cham: *Springer International Publishing*).
- **Rowe, R. C. & Farley, J. D.** (1978). Control of Fusarium crown and root rot of greenhouse tomatoes by inhibiting recolonization of steam-disinfested soil with a captafol drench. *Phytopathology*, 68, 1221 1224.
- Rowe, R. C., Farley, J. D. & Coplin, D. L. (1977). Airborne spore dispersal and recolonization of steamed soil by *Fusar-ium oxysporum* in tomato greenhouses. *Phytopathology*, 67, 1513 1517.
- Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P. & Norton, J. A. (2006). Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. *Crop Protection*, 25, 690 695.
- Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. *Nature*, 413, 591 596
- Seybold, C. A., Herrick, J. E. & Brejda, J. J. (1999). Soil resilience: a fundamental component of soil quality. *Soil Science*, 164, 224 234.
- Seybold, C. A., Mausbach, M. J. & Herrick, J. (1997). Soil resilience/Soil quality. In: *National Cooperative Soil Survey*, National Conference Proceedings, Baton Rouge, Louisiana,

- June 16-20, 1997, 157 167.
- Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M. H., Bürgmann, D., Huber, H., Langenheder, S., Lennon, J. T., Martiny, J. B., Matulich, K. L., Schmidt, T. M. & Handelsman, J. (2012). Fundamentals of microbial community resistance and resilience. Frontiers of Microbiology, 3, 417.
- Smith, C., Jayathunga, S., Gregorini, P., Pereira, F. C. & McWilliam, W. (2022). Using Soil Sustainability and Resilience Concepts to Support Future Land Management Practice: A Case Study of Mt Grand Station, Hawea, New Zealand. Sustainability, 14, 1808.
- Song, H-S., Renslow, R. S., Fredrickson, J. K. & Lindemann, S. R. (2015). Integrating ecological and engineering concepts of resilience in microbial communities. *Frontiers of Microbiology*, 6, 1298 – 1214.
- **Stakman, E. C.** (1964). Opportunity and obligation in plant pathology. *Annual Review of Phytopathology*, 2, 1 12.
- **Stapleton, J. J.** (2000). Soil solarization in various agricultural production systems. *Crop Protection*, 19, 837 841.
- **Stapleton, J. J.** (2016). Alternatives to pesticides in controlling pests and diseases. *Acta Horticulturae*, 1140, 165 168.
- Stapleton, J. J., Dahlquist, R. M., Achmon, Y., Marshall, M. N., Van der Gheynst, J. S. & Simmons, C. W. (2016). Advances in biosolarization technology to improve soil health and organic control of soilborne pests. eOrganic Website. Online: http://eorganic.info/sites/eorganic.info/files/u27/1.1.2-Stapleton-Biosolarization-Final.pdf.
- **Stapleton, J. J. & Heald, C. M.** (1991). Management of phytoparasitic nematodes by soil solarization. *In:* Soil Solarization, *CRC Press*, USA, 51 60.
- Strauss, S. L. & Kluepfel, D. A. (2015). Anaerobic soil disinfestation: A chemical-independent approach to pre-plant control of plant pathogens. *Journal of Integrative Agriculture*, 14, 2309 2318.
- Szabolcs, I. (1994). The concept of soil resilience. *In:* Soil Resilience and Sustainable Land Use. *CAB International*, Wallingford, UK, 33 39.
- Testen, A. L. & Miller, S. A. (2018). Carbon source and soil origin shape soil microbiomes and tomato soilborne pathogen populations during anaerobic soil disinfestation. *Phytobiomes*, 2, 138 150.
- Testen, A. L., Rotondo, F., Mills, M. P., Horvat, M. M. & Miller, S. A. (2021). Evaluation of agricultural byproducts and cover crops as anaerobic soil disinfestation carbon sources for managing a soilborne disease complex in high tunnel tomatoes. Frontiers in Sustainable Food Systems, 5, Article 645197.
- **Tewoldemedhin, Y. T., Mazzola, M., Labuschagne, I. & Mc-Leod, A.** (2011). A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. *Soil Biology and Biochemistry*, 43, 1917 1927.
- **Tjamos, E. C. Grinstein, A. & Gamliel, A.** (1999). Disinfestation of soil and growth media. *In:* Integrated pest management in Greenhouse Crops. *Kluwer Academic Publishers*, Dordrecht, the Netherlands, 130 149.
- Tsitsigiannis, D. I., Antoniou, P. P., Tjamos, S. E. & Paploma-

- tas, E. J. (2008). Major diseases of tomato, pepper and eggplant in greenhouses. *The European Journal of Plant Science and Biotechnology*, 2(1), 106 124.
- Valone, T. J., Meyer, M., Brown, J. H., & Chew, R. M. (2002). Timescale of perennial grass recovery in desertifi ed arid grasslands following livestock removal. *Conservation Biology*, 16, 995 1002.
- Van Bruggen, A. H. C., Gamliel, A. & Finckh, M. R. R. (2016).

 Plant disease management in organic farming systems. *Pest Management Science*, 72, 30 44.
- Van Bruggen, A. H. C., Semenov, A. M., van Diepeningen, A. D., de Vos, O. J. & Blok, W. J. (2006). Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. *European Journal of Plant Pathology*, 15, 105 122.
- Vatchev, T. D. (1995). Soilborne Pathogenic Fungi On Greenhouse Tomatoes. Ph.D. thesis (separate issue), Plant Protection Institute, Agricultural Academy, Sofia (Bg).
- **Vatchev, T. D.** (2004). The impact of soil biota and crop management practices on soil-borne plant pathogens and diseases in agricultural systems. *Bulgarian Journal of Agricultural Science*. 10, 71 87
- **Vatchev**, **T. D.** (2013). Management of crown and root rot disease complex of greenhouse tomatoes with green manure cereal crops. *Plant Sciences*, 50, 118 125.
- **Vatchev, T. D.** (2016). Long-term effect of biocidal soil disinfestation: review and case study on greenhouse tomato. *Global Journal of Advanced Biological Sciences*, 2, 1 13.
- Vitale, A., Castello, I., Cascone, G., D'Emilio, A., Mazzarella, R. & Polizzi, G. (2011). Reduction of corky root infections on greenhouse tomato crops by soil solarization in South Italy. *Plant Diseases*, 95, 195 201.
- Von Bertalanffy, L. (1968). General System Theory. Foundations, Development, Applications. New York, George Braziller, 289.
- **Wallace, H. R.** (1978). The diagnosis of plant diseases of complex etiology. *Annual Review of Phytopathology*, *16*, 379 402.
- Wang, Y., Jin, Y., Han, P., Hao, J., Pan, H. & Liu, J. (2021) Impact of soil disinfestation on fungal and bacterial communities in soil with cucumber cultivation. *Frontiers of Microbiology*, 12, 685111.
- Wheeler, D. L., Scott, J., Dung J. K. S. & Johnson, D. A. (2019). Evidence of a trans-kingdom plant disease complex between a fungus and plant-parasitic nematodes. *PLoS ONE*, 14(2), e0211508.
- Whipps, J. M. (1997). Developments in the biological control of soil-borne plant pathogens. *In:* Advances in botanical research: Incorporating Advances in Plant Pathology, *26, Academic Press, Harcourt Brace & Company, Publishers,* 1 134.
- **Wilson, C. & Tisdell, C.** (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. *Ecological Economics*, 39, 449 462.
- Wing, K. B., Wilcox, W. F. & Pritts, M. P. (1995). Biotic, edaphic, and cultural factors associated with strawberry black root rot in New York. *HortScience*, 30, 86 90.
- Wolfgang, A., Taffner, J., Guimarães, R. A., Coyne, D. & Berg, G. (2019). Novel Strategies for Soil-Borne Diseases: Exploiting the Microbiome and Volatile-Based Mechanisms Toward

Controlling Meloidogyne-Based Disease Complexes. Frontiers of Microbiology, 10, 1296.

- Yanashkov, I. & Vatchev, T. (2020). Long-term effect of multiple disinfestation of soil infected with phytopathogens: Case study of greenhouse tomato. *In:* Collection Scientific Works. XXIX International Conference "Management and Quality", 11-12 June 2020 Sofia, Bulgaria, 43 53.
- Yang, R., Weiner, J., Shi, X., Wang, Y., Zhang, R. & Meng Zhu, M. (2021). Effect of reductive soil disinfestation on the chemical and microbial characteristics of rhizosphere soils associated with Salvia miltiorrhiza production in three cropping systems. Applied Soil Ecology, 160, 103865.
- Yaron, D., Regev, A. & Spector, R. (1991). Economic evaluation of soil solarization and Disinfestation. *In*: Soil Solarization,

- *CRC Press*, USA, 171 190.
- Zanón, M. J., Font, M. I. & Jordá, C. (2011). Use of tomato crop residues into soil for control of bacterial wilt caused by *Ralstonia solanacearum*. *Crop Protection*, 30(9), 1138 1143. doi:10.1016/j.cropro.2011.03.025.
- Zanón, M. J. & Jordá, C. (2008). Eradication of *Clavibacter michiganensis* subsp. *michiganensis* by incorporating fresh crop debris into soil: preliminary evaluations under controlled conditions. *Crop Protection*, 27, 1511 1518.
- Zitnick-Anderson, K., del Río Mendoza, L. E., Forster, S. & Pasche, J. S. (2020). Associations among the communities of soil-borne pathogens, soil edaphic properties and disease incidence in the field pea root rot complex. *Plant and Soil*, 457(1-2), 339 354.

Received: April, 03, 2024; Approved: January, 13, 2025; Published: October, 2025