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Abstract

Kenarova, A. & Boteva, S. (2023). Fungicides in agriculture and their side effects on soil enzyme activities: a re-
view. Bulg. J. Agric. Sci., 29 (1), 33–42

A wide variety of fungicides are globally applied for effective elimination of fungal pathogens in agriculture. The constant 
increase in their production and use in the years rises a concern about the environmental effects that they can cause. More at-
tention is paid on fungicides such as mancozeb, azoxystrobin, chlorotalonil, carbendazim, tebuconazole and captan due to their 
widespread application. The studies are focused on the analysis of parameters that could be rapid, sensitive and informative 
for the fungicides’ impact on living organisms. Such parameter is the activity of soil microbial enzymes since their function is 
responsible for the soil health and fertility. Studies show that dehydrogenase, phosphatase and urease are the most commonly 
used enzymes due to their role in key metabolic processes, while invertase, β-glucosidase and cellulase were analyzed to a 
lesser extent. Most of the fungicides are reported to reduce the soil enzymes’ activity while others manifest positive or contro-
versial effects which is determined not only by the fungicide chemical composition but also by its dose, exposure time, and/or 
soil properties. The aim of the review is to summarize the results and outline the trends of fungicide impacts on soil enzymes 
that take part in the soil nutrient cycling. 
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Introduction

The development of agriculture could be impossible 
without the application of pesticides since their main func-
tion is to control crop pests (Baćmaga et al., 2015) and hence 
provide the growing human population with food (Wang et 
al., 2020). Among pesticides, fungicides are the most used 
agrochemicals due to the susceptibility of crops to fungal 
diseases, being a major threat to food production (Gooding 
& Davies, 1997; Dardis & Walsh, 2000; Garthwaite et al., 
2002). 

In 2019 the global fungicide market size is amounted to 
USD 16.35 billion as it is predicted to increase at a com-
pound annual growth rate of 4.3% until 2027. This is also 
caused since there are a lot of agrarian regions (India, In-

donesia, South Korea, Thailand, Mexico, Central and South 
America) in the world that rely mainly on agriculture pro-
duction (Grand View Research, 2020). In the European 
Union, fungicide sales (based on mass) account for more 
than 40% of the total pesticide sales with synthetic, organic 
fungicides accounting for approximately 60% of all sold an-
tifungal compounds (Zubrod et al., 2019).

Concerning the mechanism of action, fungicides are clas-
sified as:

Inhibitors of ergosterol synthesis – block the synthe-
sis of cell membrane and affect its integrity. Different fun-
gicides can inhibit different stages of ergosterol synthesis. 
Some of the fungicides belonging to this group are: imidaz-
ole prochloraz and triazoles difenoconazole, myclobutanil, 
propiconazole, tebuconazole, triadimefan and tridemorph.
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Inhibitors of mitochondrial electron transport (inhibitors 
of cellular respiration) – inhibitory effect can be on (1) suc-
cinate dehydrogenase activity, (2) cytochrome-bc1-complex 
(ubiquinol-cytochrome c-oxidoreductase) and (3) oxidative 
phosphorylation (ATP synthase). One of the main analyzed 
fungicides of this group are boscalid, azoxystrobin, triflox-
ystrobin, fluazinam, etc.

Others: fungicides with multi-site activity and fungi-
cides-inhibitors of nucleic acid and protein syntheses. A 
number of compounds belonging to this fungicide group are 
synthesized in order not only to achieve a high efficiency 
against phytopathogens, but also to reduce the risk of resis-
tance development. Their complex impact on cell processes 
makes it difficult for pathogens to develop multiple point 
mutations and create resistant strains. Some of the chemi-
cals with multi-side activity are mancozeb, propineb, thiram, 
captan and chlorothalonil.

Despite the intensive use of fungicides and the asso-
ciated potential for eco-toxicological risks on non-target 
organisms, the environmental effects of fungicides have 
received far less attention compared to insecticides and 
herbicides. For instance, Köhler & Triebskorn (2013) cal-
culated that only 13% of the studies on pesticide effects 
between 1991 and 2013 are focused on fungicides, com-
pared to 62% and 24% for insecticides and herbicides, 
respectively. 

Application of fungicides, especially uncontrolled use 
may cause soil contamination with long-term negative ef-
fects on soil inhabitants and soil productivity (Baćmaga et 
al., 2015). Soil enzymes, synthesized mainly by soil micro-
organisms are important indicators of soil quality because of 
their immediate response to natural or anthropogenic chang-
es in soil environments. 

The present review attempts to summarize the informa-
tion in the scientific literature on the effects of fungicides on 
soil enzymes, focusing on the fungicide dose and the enzyme 
responses in terms of their intensity, time and longevity of 
manifestation.

Fungicides of highest research interest 
The review is based on the results of 45 authors reported 

in the period 2000 – 2020, who have studied the toxicity of 
a total of 28 fungicides. The first mentioned fact is that the 
number of tested active ingredients is very small compared 
to the large number of ingredients with antifungal activity 
(more than 580) that is marketed today (Wood, 2021). Some 
of the fungicides (azoxystrobin, carbendazim, chlorotalonil, 
mancozeb and tebuconazole) were analyzed in more than 
one study, and other fungicides (boscalid, fluazinam, ipro-
benfos, triazam, etc.) were found once in the literature. 

Studies about the side effects of mancozeb, azoxystrobin, 
chlorotalonil, carbendazim, tebuconazole and captan com-
prise 50% of the total number of researches focused on fun-
gicide stress on soil enzymes. The great interest to these ag-
rochemicals is provoked by their widespread use due to their 
high efficiency on phytopathogens (mancozeb, chlorotalonil 
and azoxystrobin), high toxicity (chlorotalonil), and/or the 
large market share (mancozeb and azoxystrobin).

Market analysis shows that sold products containing 
mancozeb in 2007 worth approximately $ 740 million 
(Dow AgroSciences, 2008). About 85% of the sales are 
evenly distributed between Europe and the Asia-Pacific 
region, with only about 4% in North American markets. 
France, Italy, Spain and Portugal are among the countries in 
Europe with the most widespread use of mancozeb (Gulli-
no et al., 2010).

The azoxystrobin market represents almost 46.51% of 
the total use of azoxystrobin for plant protection due to the 
growing demand for cereals. It is estimated at $ 460 million 
in 2017 and it will reach $ 1330 million by the end of 2025. 
Developing economies in the Asia-Pacific region (especial-
ly China and India) are expected to be the fastest growing 
azoxystrobin market in the next few years (QYResearch, 
2018). 

In the last few years, the development of chlorothalonil 
production has been unstable, with a growth rate ranging 
from 2.3% to 11.8%. In 2016, the actual production was 
about 35.3 thousand tons (Zhang, 2017). The global chloro-
thalonil market is estimated at $ 200 million in 2017, and is 
expected to reach $ 330 million by the end of 2023 (Report 
Hive Research, 2018), comprising growth rate of about 9%. 
With regard to the identified toxicity of chlorothalonil, the 
European Commission envisaged not renewing the approval 
of this fungicide after October 2019 and withdrawed existing 
products with chlorothalonil from the market in the first half 
of 2019 (Regulation 2019/677, 2019).

Effect of fungicides on soil enzymes
Data on the fungicide effects on 16 soil enzymes have 

been found in the literature. Some of the enzymes were test-
ed by many authors using different fungicides, while others 
were less analyzed. 

The most commonly used indicators of the fungicide ef-
fects are several soil enzymes – dehydrogenase, phosphatase 
and urease, and to a lesser extent – invertase, β-glucosidase 
and cellulase. In fact, 90%, 75% and 68% of the studied 
fungicides are tested for their side effects on phosphatase, 
dehydrogenase and urease, respectively. The focus on these 
enzymes is justified due to their key positions in metabolic 
pathways related to cell energy and nutrient supply. 
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Effects of fungicides on soil dehydrogenases 
Soil dehydrogenases (EU 1.1.1.) are the main represen-

tatives of the oxidoreductases class (Gu et al., 2009). Dehy-
drogenases play an important role in biological oxidation of 
soil organic matter by transferring hydrogen from organic 
substrates to inorganic acceptors (Zhang et al., 2010). The 
total soil dehydrogenase activity depends on the activity of 
various specific dehydrogenases, which are a major part of 
the enzyme system of all living microorganisms, such as 
enzymes of respiratory metabolism, citrate cycle and nitro-
gen metabolism (Subhani et al., 2001). Thus, soil dehydro-
genase activity serves as an indicator of microbiological re-
dox systems and can be considered as a good and adequate 
measure for assessing microbial oxidative activity.

The highest interest in the effects of fungicides on soil 
dehydrogenase activity is shown for strobilurins (azox-
ystrobin), triazoles (myclobutanil, tebuconazole and tri-
adimefon), benzimidazoles (benomyl and carbendazim), 
chloronitriles (chlorothalonil), carbamates (mancozeb and 
mixtures, and pirimicarb) and phenylamides (mefenoxam 
and metalaxyl).

In general, the reported effects of fungicides on the ac-
tivity of dehydrogenase are negative, as they relate to the 
fungicide type and the applied dose (Baćmaga et al., 2015, 
2020; Bello et al., 2012; Sun et al., 2020), and exposure time 
(Bending et al., 2007; Sopeña & Bending, 2013; Baćmaga et 
al., 2015; Guo et al., 2015; Wang et al., 2018). Stimulating 
effects are also observed, for example when benomyl was 
applied (Shukla, 2000; Chen et al., 2001).

The phenylamides mefenoxam and metalaxyl showed a 
strong toxicity on dehydrogenase at all applied concentra-
tions (1 mg/kg – 1000 mg/kg). No recovery of enzyme activ-
ity was reported after mefenoxam (Monkiedje et al., 2002), 
while metalaxyl showed a weak stimulating effect after the 
30-th/60-th day of soil amendment (Monkiedje et al., 2002; 
Sukul, 2006). For both fungicides, the effects on the enzyme 
were dose-dependent.

The significant effects of the strobilurin azoxystrobin 
on soil dehydrogenase, usually negative (Sopeña & Bend-
ing, 2013; Baćmaga et al., 2015; Guo et al., 2015; Álva-
rez-Martín et al., 2016; Wang et al., 2018), occured after 
prolonged exposure (30 – 60 days), but stimulating effects 
were also reported (Bending et al., 2007). Unlike other au-
thors, Alvarez-Martin et al. (2016) did not report a signifi-
cant effect of azoxystrobin on dehydrogenase activity in dose 
range of 0.2 mg/kg – 25.0 mg/kg and sampling occasion on 
0 – 30 – 90 day.

The triazoles myclobutanil and triadimefon showed a 
weak stimulating effect on dehydrogenase activity at low 
concentrations (0.1 mg/kg – 0.68 mg/kg) and a short-term 

weak toxicity at higher concentrations (1 mg/kg and 10 mg/
kg) (Deborah et al., 2013; Zhang et al., 2017). 

Unlike all the fungicides considered so far, results ob-
tained for tebuconazole are extremely contradictory, which 
provokes the idea that its action may depend on the environ-
mental characteristics more than any other agrochemicals. 
For example, Bending et al. (2007) and Saha et al. (2016) 
found that doses below 5 mg/kg inhibit dehydrogenase ac-
tivity. Bending et al. (2007) emphasized that after inhibi-
tion the enzyme not only recovered but was even stimulated 
compared to the control, and the authors related these fluc-
tuations to soil characteristics, finding that the enzyme was 
weakly or completely unaffected in soils with high organic 
content. Wang et al. (2016) and Sun et al. (2020) observed 
enzyme inhibition at tebuconazole concentrations of 10 
mg/kg (Wang et al., 2016; Sun et al., 2020) and 100 mg/kg 
(Wang et al., 2016), but not at 1 mg/kg (Wang et al., 2016). 
Baćmaga et al. (2020) reported reduction in enzyme activity 
under concentrations of 1.395 mg/plant and 2.790 mg/plant 
of tebuconazole commercial formulation Helicur 250 EW. 
Unlike all the authors listed above, Muñoz-Leoz et al. (2013) 
did not find a clear trend of changes in dehydrogenase activ-
ity under the influence of tebuconazole.

Chlorothalonil is highly toxic to dehydrogenase and in-
hibited the enzyme activity at test concentrations ranging 
from 0.17 mg/kg to 16.6 mg/kg (Singh et al., 2002; Bending 
et al., 2007; Baćmaga et al., 2018; Han et al., 2020).

The effect of carbamates macozeb and pirimicarb on de-
hydrogenase activity is not unambiguous in the studies. Shuk-
la (2000) recorded a slight decrease in enzyme activity at a 
macozeb concentration of 2.74 mg/kg, while Rasool & Reshi 
(2010) registered a stimulating effect at many times higher 
fungicide concentrations (above 800 mg/kg). Probably in the 
research of Rasool & Reshi (2010) a “stress metabolism” was 
caused, which is characterized by increased activity of cellu-
lar enzymes for generating energy in the affected cells. Alva-
rez-Martin et al. (2016) observed a slight decrease in dehy-
drogenase activity at 2.74 mg/kg concentration of pirimicarb.

The benzimidazole fungicide benomyl stimulated dehy-
drogenase activity both at low (0.51 mg/kg; Shukla, 2000)) 
and high (51 mg/kg; (Chen et al., 2001)) concentrations. An-
other benzidimazole, such as carbendazim, had a short-term 
inhibitory effect on dehydrogenase, followed by enzyme re-
covery at all tested concentrations (0.76 mg/kg – 100 mg/kg) 
on 56-th (Burrows & Edwards, 2004) or 90-th (Wang et al., 
2016) day after treatment.

Effect of fungicides on soil cellulase
Cellulose is the most common structural polysaccharide 

in soil and accounts for almost 50% of plant biomass (Eriks-
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son et al., 1990). Cellulase is an enzyme that is produced 
mainly by microorganisms, but is also found in plants and 
some invertebrates (Sadhu & Maiti, 2013). Cellulase cata-
lyzes the hydrolysis of cellulose to D-glucose (Hussain et 
al., 2009) and is a complex consisting of at least three en-
zymes (Joachim & Patrick, 2008): endo-1,4-β-glucanase, 
which randomly attacks cellulose chains; exo-1,4-β-gluca-
nase, which removes glucose or cellobiose from the non-re-
ducing end of cellulose chains, and β-D-glucosidase, which 
hydrolyzes cellobiose and other water soluble cellodextrins 
to glucose (Makoi & Ndakidemi, 2008).

The effects of fungicides on soil cellulase have been stud-
ied by a number of authors (Srinivasulu & Rangaswamy, 
2006; Floch et al., 2011; Ramudu et al., 2011; Deborah et 
al., 2013), as they all found similar pattern of changes in en-
zyme activity under fungicide stress. Low doses (0.2 – 1.0 
kg/ha) of propiconazole, tridemorph and captan (Srinivasulu 
& Rangaswamy, 2006; Ramudu et al., 2011; Deborah et al., 
2013) stimulated cellulase immediately after fungicide appli-
cation, followed by a weak inhibition and enzyme recovery. 
This trend of changes in cellulase activity was also observed 
by Floch et al. (2011), using mancozeb at a concentration of 
100 mg/kg. Higher concentrations (7.5 kg/ha and 10.0 kg/
ha) of propiconazole, tridemorph and captan either did not 
cause a significant effect (Srinivasulu & Rangaswamy, 2006) 
or were toxic (Ramudu et al., 2011) to soil cellulase.

Effect of fungicides on soil β-glucosidase
β-glucosidase belongs to the group of cellulolytic en-

zymes that catalyze the hydrolysis of glycosidic bonds of 
cellulose residues in soil (de Vries & Visser, 2001). The end 
product of the enzyme’s activity is glucose, an important en-
ergy source for soil microbial communities. It is known that 
β-glucosidases are synthesized in plants, animals and micro-
organisms (Veena et al., 2011). According to some authors, 
soil β-glucosidase activity is represented mainly by enzymes 
of microbial origin that are excreted in soil solution or are 
immobilized on clay or humus colloidal particles (Busto & 
Perez-Mateos, 2000). It has been identified that β-glucosi-
dase is an enzyme which is sensitive to changes in soil and 
can be used as an early indicator of changes in the soil or-
ganic complex as a result of different agricultural practice 
(Turner et al., 2002; de la Horra et al., 2003). 

There is a relatively small interest in the action of fungi-
cides on soil β-glucosidase. The toxic effects of the triazoles 
tebuconazole and difenoconazole (Muñoz-Leoz et al., 2011, 
2013; Baćmaga et al., 2020), carboxyamide boscalid (Xiong 
et al., 2014), the imidazole prochloraz (Tejada et al., 2011), 
and the phenylamide metalaxyl (Sukul, 2006) were studied. 
According to Muñoz-Leoz et al. (2011, 2013) a concentra-

tion of 5 mg/kg difenoconazole had no significant effect 
on enzyme activity, while higher concentrations of difeno-
conazole (50 mg/kg and 500 mg/kg), as well as all tested 
concentrations of tebuconazole (5.0 mg/kg – 500 mg/kg) had 
a negative effect on β-glucosidase. Sukul (2006), Tejada et al. 
(2011) and Xiong et al. (2014) found that low tested fungi-
cide concentrations (100 mg/ha metalaxyl, 1 l/ha prochloraz 
and 10 mg/kg boscalid) had a weak stimulating effect on soil 
β-glucosidase, and high concentrations (400 mg/ha metal-
axyl, 4 l/ha prochloraz and both 100 mg/kg and 200 mg/kg 
boscalid) inhibited it. Baćmaga et al. (2020) reported insig-
nificant effects of tebuconazole commercial product Helicur 
250 EW on β-glucosidase, except at the highest used con-
centrations of 1.395 mg/plant and 2.790 mg/plant, where the 
enzyme activity decreased by 5.6% and 7.0%, respectively.

A comparative analysis of the effects of the fungicides 
listed above showed that the imidazole prochloraz and the 
triazole tebuconazole had relatively highly toxicity to soil 
β-glucosidase, which showed an inhibitory effect even at 
concentrations of 0.5 mg/kg and 0.26 ml/kg (equal to 4 l/ha), 
respectively. 

Effect of fungicides on soil invertase
Invertase (β-fructofuranosidase, E.C.: 3.2.1.5) catalyz-

es the hydrolysis of sucrose to glucose and fructose – low 
molecular weight sugars, which are an essential source of 
energy for microorganisms (Jin et al., 2009). The enzyme 
is synthesized and released into the soil by microorganisms, 
plants and some animals (Belcarz et al., 2002), and catalyz-
es the hydrolysis of sucrose under both acidic and alkaline 
environmental conditions. Invertase is used as an indicator 
to assess the efficiency of food and energy metabolism, as 
well as the efficiency of pollutants’ decomposition in soils 
(Nannipieri et al., 1990).

The triazoles tebuconazole, triadimefon and propi-
conazole (Ramudu et al., 2011; Deborah et al., 2013; Wang 
et al., 2016; Sun et al., 2020), and benzimidazole fungicide 
carbendazim (Yan et al., 2011; Wang et al., 2016; Zhao et al., 
2016) are the most commonly tested for effects on invertase. 
Low concentrations of triazole fungicides stimulated inver-
tase activity, while high (10 mg/kg) and very high (above 
100 mg/kg) concentrations inhibited it. Unlike other authors, 
Deborah et al. (2013) found that triadimefon inhibited inver-
tase activity even at a concentration of 0.2 kg/ha (equal to 
2.7 mg/kg). 

Like triazoles, carbendazim had a weak stimulating ef-
fect on soil invertase at lower concentrations (1.0 mg/kg – 
10.0 mg/kg) (Yan et al., 2011; Wang et al., 2016; Zhao et al., 
2016), and an inhibitory effect at a concentration of 100 mg/
kg (Wang et al., 2016). 
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The pattern of enzyme stimulation by low and inhibition 
by high doses was confirmed also for the fungicides mancoz-
eb (Walia et al., 2014), chlorothalonil (Ramudu et al., 2011), 
tridemorph (Srinivasulu & Rangaswamy, 2006), and captan 
(Srinivasulu & Rangaswamy, 2006). The stimulating effect 
was usually weak and was followed by enzyme stabilization 
within a few months.

Wang et al. (2020) found that azoxystrobin did not influ-
ence on soil invertase activity at concentration of 2 mg/kg, 
and significantly decreased it on day 35 at fungicide concen-
trations of 25 mg/kg and 50 mg/kg. 

Effect of fungicides on soil amylase
Starch is one of the main polysaccharides synthesized by 

plants and is considered the third source of plant biomass on 
the planet after lignocelluloses. Amylases are extracellular 
enzymes that catalyze the hydrolysis of internal α-1,4-gly-
cosidic bonds in starch molecule to dextrin and other small 
glucose units (Ryan et al., 2006). Based on the site of action, 
amylase enzymes are classified as: α-amylase, β-amylase 
and γ-amylase. α-and β-amylases are widespread in the soil 
as α-amylase is synthesized by plants, animals and microor-
ganisms, while β-amylase is synthesized mainly by plants 
(Thoma et al., 1971). 

It was found that mancozeb (Walia et al., 2014) and triad-
imefon (Deborah et al., 2013) simulated soil amylase at low 
doses (mancozeb: 10 ppm and triadimefon: 0.2 kg/ha), while 
higher doses (mancozeb: 200 – 2000 ppm and triadimefon: 
0.5 – 0.7 kg/ha) inhibited the activity of the enzyme. Triadi-
mefon was much more toxic to soil amylase than mancozeb, 
since even a concentration of 0.5 kg/ha (6.8 mg/kg) inhibited 
the enzyme. Mancozeb stimulated amylase even at a con-
centration of 100 ppm, but the effect was temporary and then 
underwent a process of inhibition.

Effect of fungicides on soil phosphatases
The hydrolysis of organic phosphates in the soil is cat-

alyzed by phosphatases – acidic and alkaline phosphatases, 
which are activated depending on the environmental pH. 
Sources of soil acid phosphatase are plant roots (Bull et 
al., 2002), fungi (Tarafdar & Marschner, 1994) and bacte-
ria (Tarafdar & Claassen, 1988), whereas for alkaline phos-
phatase – soil microorganisms and invertebrates (Tarafdar & 
Claassen, 1988). Microbial phosphatases are mainly bound 
to the cell membrane or are located on the outer surface of 
the cell wall (Lacaze, 1983).

Among soil phosphatases, the most commonly studied 
enzymes for soil quality assessment are phosphomonoes-
terases. Phosphomonoesterases hydrolyze monophosphates 
with the release of inorganic phosphorus (Reid & Wilson, 

1971), but cannot initiate the hydrolysis of phospholipids 
and nucleic acids without the activity of phosphodiesteras-
es. Initially, the hydrolysis of organic substances is carried 
out by phosphodiesterase with the release of phosphate mon-
oesters, which are then hydrolyzed by phosphomonoesterase 
to bioavailable phosphorus.

The fungicide effects were most often evaluated for acid 
(20 authors tested 20 fungicides) and less for alkaline (14 
authors tested 12 fungicides) phosphomonoesterases (Rah-
mansyah et al., 2009; Cycoń et al., 2010; Rasool & Reshi, 
2010; Floch et al., 2011; Madakka et al., 2011; Muñoz-Leoz 
et al., 2011, 2013; Walia et al., 2014; Saha et al., 2016; Wang 
et al., 2016; Satapute et al., 2019; Baćmaga et al., 2020; 
Wang et al., 2020). Only Floch et al. (2011) in their study 
performed a complete analysis of the effects of mancozeb on 
phosphatases, following the effects of the fungicide on both 
mono- (acidic and alkaline), and di- and tri- (involved in the 
degradation of a number of pesticides) phosphoesterases.

In general, the effects of carbamates (mancozeb, thriam, 
probineb) on acid (Rahmansyah et al., 2009; Floch et al., 
2011; Madakka et al., 2011; Walia et al., 2014) and alkaline 
(Rasool & Reshi, 2010; Floch et al., 2011) phosphomonoes-
terases can be reported as stimulating. Only at concentra-
tions above 100 mg/kg, a temporary weak inhibitory effect 
occured, followed by a rapid recovery of the enzyme activity 
(Cycoń et al., 2010; Floch et al., 2011; Walia et al., 2014). 
Floch et al. (2011) also found that mancozeb stimulated di- 
and tri- phosphosterases.

Triazoles difenococnazole and propiconazole had a stim-
ulating effect on acid phosphatase as during prolonged ex-
posure this effect decreased and even inhibition was regis-
tered (Madakka et al., 2011; Satapute et al., 2019). Saha et al. 
(2016) recorded an exactly reverse trend of the effect of tebu-
conazole on acid phosphomonoesterase, although they used 
the same range of concentrations as Madakka et al. (2011) 
and Satapute et al. (2019). Baćmaga et al. (2020) reported 
that only the highest used concentration (2.790 mg/plant) of 
tebuconazole (Helicur 250 EW) reduced significantly the ac-
tivity of acid phosphomonoesterase, and the reduction rate 
was 37.5% of the control. In general, higher doses (over 13 
mg/kg) of fungicides difenococnazole and propiconazole 
inhibited acid phosphomonoesterase (Madakka et al., 2011; 
Satapute et al., 2019). Tebuconazole inhibited alkaline phos-
phomonoesterase at prolonged exposure (Muñoz-Leoz et al., 
2011; Saha et al., 2016; Wang et al., 2016; Baćmaga et al., 
2020), although it was reported either no effect (Saha et al., 
2016; Wang et al., 2016) or enzyme stimulation (Muñoz-
Leoz et al., 2011) immediately after fungicide application. 
Difenococnazole had no effect on alkaline phosphomonoes-
terase at a concentration of 5 mg/kg and manifested dose-de-
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pendent inhibition at 10- and 100- fold higher concentrations 
(Muñoz-Leoz et al., 2013).

Phenylamides mefenoxam and metalaxyl did not show 
a clear effect (metalaxyl) or stimulated (mefenoxam) acid 
phosphomonoesterase activity in a wide range of concentra-
tions (1 mg/kg – 1000 mg/kg) (Monkiedje et al., 2002). Me-
fenoxam and metalaxyl had no significant effect on alkaline 
phosphomonoesterase in concentrations up to 200 mg/kg, 
but the highest tested concentration of 1000 mg/kg resulted 
in weak (metalaxyl) or much stronger (mefenoxam) inhibi-
tion of the enzyme activity. 

The strobilurin azoxystrobin significantly decreased the 
activity of acid phosphomonoesterase by concentrations of 
25 mg/kg and 50 mg/kg, and the effect was clearly mani-
fested on day 14 after soil fungicide amendment (Wang et 
al., 2020). Wang et al. (2020) found that enzyme inhibition 
occurred even at fungicide concentration of 2 mg/kg, but the 
effect was delayed (on 35 day after soil amendment) com-
pared to that under the higher used fungicide.

The chloronitrile chlorothalonil was toxic to acid phos-
phomonoesterase (Singh et al., 2002; Baćmaga et al., 2018), 
but had no clear defined effect on alkaline phosphomonoes-
terase (Baćmaga et al., 2018).

Effect of fungicides on soil urease
Urease is an enzyme that catalyzes the hydrolysis of urea 

to СО2 and NH3 (Tabatabai, 1982). It is widespread in nature, 
synthesized mainly by plants (Polacco, 1977) and microor-
ganisms, and has been found to exist as an intracellular and 
extracellular form (Mobley & Hausinger, 1989). On the oth-
er hand, urease secreted by cells is rapidly deactivated, sug-
gesting that soil urease activity is carried out predominantly 
by the extracellular form of the enzyme, which is stabilized 
by immobilization on organic and mineral soil colloids. Ure-
ase is a widely used indicator for assessing the impact of 
agro-ameliorative activities (Saviozzi et al., 2001) or pollut-
ants (Yang et al., 2006) on soil health.

Thiazoles tebuconazole, difenococnazole and propi-
conazole are the group of fungicides that were the most com-
monly tested for effects on soil urease (Muñoz-Leoz et al., 
2011, 2013; Saha et al., 2016; Wang et al., 2016; Satapute 
et al., 2019; Baćmaga et al., 2020; Sun et al., 2020) and in 
a wide range of applied concentrations – from 2.26 mg/kg 
(Saha et al., 2016) to 500 mg/kg (Muñoz-Leoz et al., 2011, 
2013). Saha et al. (2016) found that the recommended field 
dose (187.5 g/ha) and two-fold higher dose had a stimulating 
effect on soil urease, while a dose of 1875 g/ha significantly 
inhibited the enzyme. Sun et al. (2020) confirmed the nega-
tive effect of high (10 mg/kg) tebuconazole dose on urease 
activity. Baćmaga et al. (2020) reported inhibitory effects of 

Helicur 250 EW on urease activity at concentrations of 1.395 
mg/plant and 2.790 mg/plant, and the inhibition rates were 
15.6% and 59.9%, respectively.

The above mentioned authors, except Muñoz-Leoz et 
al. (2013), reported that thiazoles in concentrations above 1 
mg/kg had a negative effect on soil urease. Dose-dependent 
(Wang et al., 2016) or independent (Muñoz-Leoz et al., 2011) 
effects of tebuconazole on urease at concentrations from 1.0 
mg/kg to 500 mg/kg were also found. These differences in 
the enzyme responses may be explained by soil properties or 
other environmental characteristics.

The effects of benzimidazoles benomyl and carbendaz-
im on soil urease were studied by Yan et al. (2011), Wang 
et al. (2016), Zhao et al. (2016) and Shukla (2020). At low 
concentrations (0.51 mg/kg), benomyl did not cause signif-
icant effects on soil urease. According to Yan et al. (2011) 
and Wang et al. (2016), carbendazim concentrations in the 
range of 1.0 mg/kg – 100 mg/kg stimulated urease activi-
ty with a dose-dependent effect (Wang et al., 2016), which 
occured at different exposure times. Higher concentrations 
of carbendazim (340 mg/kg) adversely affected soil urease 
activity (Zhao et al., 2016).

Strobilurins azoxystrobin and trifloxystrobin were stud-
ied in concentrations of 0.075 mg/kg – 50.0 mg/kg (azox-
ystrobin) and 0.1 – 144 mg/kg (trifloxystrobin). Low con-
centrations of fungicides did not cause significant effects 
on soil urease, while concentrations above 10.0 mg/kg had 
a negative effect on the enzyme (Wightwick et al., 2013; 
Baćmaga et al., 2015; Guo et al., 2015; Wang et al., 2018; 
2020). Usually, enzyme inhibition was recorded later – on 
the 7-th (Wightwick et al., 2013), 14-th (Guo et al., 2015; 
Wang et al., 2020) or 30-th (Baćmaga et al., 2015) day af-
ter soil treatment with the respective fungicide. Among the 
above mentioned authors, only Wang et al. (2018) regis-
tered urease inhibition immediately after soil amendment 
with azoxystrobin (0.1 mg/kg – 10.0 mg/kg), followed by 
an enzyme recovery on day 14. A reversible stimulating ef-
fect of 2 mg/kg fungicide concentration on enzyme activity 
was reported by Wang et al. (2020). Carbamates mancoz-
eb and probineb had a completely inhibitory effect on soil 
urease, and at the lowest used mancozeb concentration (2.7 
mg/kg) the effect was reversible (Shukla, 2000). The enzyme 
inhibition caused by probineb at concentrations higher than 
11.3 mg/kg (Rahmansyah et al., 2009) or by mancozeb in the 
range of 82.2 mg/kg – 8220 mg/kg (Rasool & Reshi, 2010) 
was long-term, lasting for probineb more than 12 weeks.

Effect of fungicides on soil arylsulfatase
Soil arylsulfatase is essential for the transformation of 

sulfur-containing compounds and mineral nutrition of plants. 
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However, the enzyme has been relatively little studied com-
pared to these involved in carbon, nitrogen and phosphorus 
cycle. Arylsulfatases are widespread in soils (Gupta et al., 
1993) and perform the hydrolysis of soil sulfate esters to 
phenol and sulfate sulfur (Kertesz & Mirleau, 2004). Aryl-
sulfatases are mainly secreted by bacteria in response to soil 
sulfur deficiency (Kertesz & Mirleau, 2004), but to a lesser 
extent they can also be synthesized by plants and animals 
(Nicholls & Roy, 1971). Extracellular arylsulfatase activity 
correlates with the amount of soil organic matter and humic 
acids (Speir & Ross, 1978).

Tebuconazole and difenococnazole have been widely 
studied in evaluation of arylsulfatase responses to triazole 
fungicides (Muñoz-Leoz et al., 2011; 2013; Saha et al., 2016; 
Baćmaga et al., 2020). Saha et al. (2016) found that tebuco-
nazole and difenococnazole applied at concentrations close 
to the recommended field dose did not cause a significant 
effect on soil arylsulfatase, but like the other authors, Saha et 
al. (2016) demonstrated the toxic effect of fungicides when 
applied at higher concentrations. Baćmaga et al. (2020) did 
not found any significant effect of Helicur 250 EW (tebu-
conazole commercial formulation) on arylsulfatase under 
a wide range of tested fungicide concentrations (0.046 mg/
plant – 2.790 mg/plant). 

Floch et al. (2011) also reported a negative effect of man-
cozeb (100 mg/kg) on soil arylsulfatase, which was in line 
with the above mentioned statements on the negative effects 
of high fungicides’ concentrations on soil enzyme. Sukul 
(2006) reported a delayed effect of metalaxyl, as low doses 
(100 g/ha and 200 g/ha) stimulated and high dose (400 g/ha) 
inhibited arylsulfatase on the 30-th and 60-th day after soil 
amendment.

Conclusions

Fungicides are extensively used in agriculture as a part 
of disease control strategies. Fungicides kill or inhibit phyto-
pathogenic fungi and/or their spores, but they may adversely 
affect soil functioning including nutrient biotransformation 
in soils. Therefore, the fungicide impact must be well de-
fined in order to use the best agrochemicals for better effec-
tiveness and less side effects. Soil enzymes are often the pri-
mary sites of attack by fungicides. Fungicides attack directly 
by reacting with the enzymes or inhibit the proliferation of 
soil microorganisms, which are the main producers of soil 
enzymes.

Based on literature review, we can conclude that: (1) 
Fungicides Showed clear effects on almost all analyzed soil 
enzymes; (2) Either positive or negative, fungicide effects 
on soil enzymes were dependent – dose and/or exposure 

time, and/or soil properties; (3) Soil dehydrogenase was the 
most sensitive enzyme to fungicides, and alkaline phospha-
tase and catalase were the most resistant; (4) Chlorothalonil 
was the most toxic to soil enzymes, and mancozeb was the 
least toxic, followed by carbendazim; (5) The manifestation 
of fungicide toxicity to soil enzymes was in the following 
order: mancozeb < carbendazim < azoxystrobin ≈ tebuco-
nazole << chlorothalonil.

This review gives new insights on the most appropriate 
enzymes for bioindication of fungicide impact on soil quali-
ty. If fungicides that are not fully analyzed are tested in detail 
this will enrich the data, and it could be in favor of decision 
making and accurate fungicide application.
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