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Abstract

MLADENOV, M. I., M. P. DEJANOV and R. TSENKOVA, 2015. Grain sample quality assessment fusing the 
results from color image and spectra analyses. Bulg. J. Agric. Sci., 21: 225-236

The paper presents the approaches, methods and tools for assessment of main quality features of grain samples which are 
based on color image and spectra analyses. Visible features like grain color, shape, and dimensions are extracted from the 
object images. Information about object color and surface texture is obtained from the object spectral characteristics. The 
categorization of the grain sample elements in three quality groups is accomplished using two data fusion approaches. The 
first approach is based on the fusion of the results about object color and shape characteristics obtained using image analysis 
only. The second approach fuses the shape data obtained by image analysis and the color and surface texture data obtained by 
spectra analysis. The results obtained by the two data fusion approaches are compared.
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Introduction 

One of the main factors of human life quality is the food 
quality and safety. The food provides the energy, needed for 
the human body for movement, physical and intellectual ac-
tivity. It is a source of proteins, fats, carbohydrates, vitamins 
and minerals, due to them the cells and tissues are renovated. 
As a result of the feeding the human organism produces hor-
mones, enzymes and other regulators of the metabolic pro-
cesses.

The assessment of food quality and safety is an important 
part of food production chain. The grain is a main part of 

the human and animal food. The higher food quality require-
ments demand development of new, objective, intelligent 
technologies, methods and tools for assessment of main food 
quality and safety features. 

The grains and the cereals are an essential part of the human 
food. The cereals assure the half of the daily energy ration of the 
people in the developed countries and 80% in the developing 
countries. The grains of the wheat, maize, rice, barley, oats and 
millet contain about 60 - 80% carbohydrates, 8 - 15% proteins 
and 1.5 - 2% fats according to Emes et al. (2003).

The problem for rapid, objective, automated, express and 
nondestructive grain quality assessment is a complex and 
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multilevel task, related to the analysis of the appearance, the 
visible features as well as the grain contents, smell, flavor, 
moisture content, infections, non-grain impurities, etc. of the 
grain sample elements.

This investigation is focused on the assessment of main 
corn grain quality features. There are proposed and inves-
tigated methods and tools for feature extraction and data 
dimensionality reduction, analysis and identification of the 
grain sample elements. They are based on the analysis of 
color images and spectral characteristics of the investigated 
objects, as well as the fusion of the results of the two kinds 
of analyses. This approach is realized in the frame of IN-
TECHN project DО 02-143/16.12.2008 (2008) “Development 
of Intelligent Technologies for Assessment of Quality and 
Safety of Food Agricultural Products” founded by Bulgarian 
National Science Fund.

According to the Bulgarian national standards the main 
quality features are as follow: the appearance, shape, color, 
smell, taste, moisture and impurities typical for the variety. 
Some of these features of a corn grain sample are presented 
in Table 1. The assessment of grain quality features presented 
in Table 1 is mainly related to the visible features of the grain 
sample elements and features related to the grain content, dry 
matter content, moisture content, starch, protein, glutenin, 
vitamins, toxins and mineral content according to Bulgarian 
Government Standard 607-73 (1973).  

It is obvious that all of the features mentioned above cannot 
be evaluated using the information extracted from one sensor 
source only. A huge part of these features (for example grain 
appearance, shape and color) are evaluated by an expert on the 
base of visual assessment only. That’s why such features can be 
efficiently evaluated using a Computer Vision System (CVS). 
A review of the progress of computer vision in the agricultural 
and food industry is given by Brosnan and Sun (2003).

Some features like grain composition, content, infections 
etc. cannot be evaluated by means of CVS. Spectra analysis 
is mainly used for assessment of such features. Other features 
like moisture content, specific weight etc., are evaluated 
by other standard physicochemical methods. Acording to 

Mladenov (2011) obtaining a complex assessment of the grain 
quality using data about color, shape and dimensions of the 
grain sample elements is a complicated and multilevel task. 
This is because the color, the shape and the dimensions of the 
elements in a sample vary within a wide range.

There are many publications related to the assessment of 
some particular quality features using color image analysis. A 
digital image analysis algorithm based on the textural features 
is developed for classification of individual kernels of cereal 
grains (Mahesh et al., 2010). Color analyses are used to assess 
variety (Majumdar and Jayas, 2000a,b), infections (Ning et 
al., 1988; Mladenov et al., 2011b), germination (Mladenov 
and Dejanov, 2008a), weed identification (Aitkenhead  et al., 
2003), etc.

The grain variety is usually assessed by means of different 
morphological features related to the shape and geometrical 
parameters. A set of eight morphological features namely 
area, perimeter, length of major axis, length of minor axis, 
elongation, roundness, Feret diameter and compactness are 
used to recognize five different kinds of cereal grains (Paliwal 
et al., 2001). A broader investigation about classification 
of barley, Canada Western Amber Durum wheat, Canada 
Western Red Spring wheat, oats, and rye is presented in 
(Paliwal et al., 2003a). It is based on a total of 230 features (51 
morphological, 123 color and 56 textural). A profile analysis 
through one-dimensional digital signals (Liao et al., 1993), 
by modeling the shape by means of a set of morphological 
features (Paliwal et al., 2003b) and by shape curvature 
analysis (Mladenov et al., 2011) is performed for assessment 
of grain purity. Computer vision methods are also used to 
determine kernel mechanical damage, mold damage (Ng et 
al., 1998), broken kernels in threshing process (Schneider et 
al., 1999), etc.

A preliminary investigation (Mladenov et al., 2011) shows 
that we can’t get a precise assessment of some of the grain 
sample elements like smutty grains, infected grains and non-
grain impurities, using an image analysis. It is difficult to 
detect the small changes of surface texture through a CVS. 
That’s why we expect a more accurate assessment of such 

Table 1
Corn grain quality groups
Grain quality groups Grain quality features

First group - standard kernel Whole grains and broken grains bigger than the half of the whole grain, with 
appearance, shape and color typical for the variety

Second group -grain impurities 
Broken grains smaller than the half of the whole grain, heat-damaged grains, small 
grains, shriveled  grains, green grains, sprouted grains, infected (with Fusarium) 

grains, smutty grains.
Third group – non-grain impurities Corn-cob particles, leaf and stem fractions, pebbles, soil and sand, as well as 

harmful elements
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features to be gotten by spectra analysis. Unfortunately 
information about shape and dimensions cannot be extracted 
from spectra.

Visible (VIS) and Near Infrared (NIR) spectra analyses are 
applied in the assessment different food products (Tsenkova 
et al., 2010; Nakakimura et al., 2012; Damyanov et al., 2006; 
Mladenov et al., 2011), as well as of grain quality features 
like grain composition, dry matter content, moisture content, 
starch, protein, glutenin, vitamins, toxins, mineral content, 
etc (Huang et al., 2008; Mladenov et al., 2011; Huang et al., 
2008; Dowell et al., 2002; Girolamo et al., 2009). Different 
calibration models are developed for predicting grain 
composition and content (Peiris, 2001; Paulsen et al., 2003; 
Paulsen et al., 2004; Huang et al., 2008; Wesley et al., 2001; 
Miralbés et al., 2003).

Modified partial least squares models on NIR spectra (850 
− 1048.2 nm) are developed to predict grain quality features 
(Paulsen et al., 2003). The best models are obtained for 
protein, moisture, wet gluten, and dry gluten with r2 = 0.99, 
0.99, 0.95, and 0.96, respectively. 

The spectra analysis is also used for detection of different 
grain infections. Determination and prediction of the content 
of ergosterols and different kinds of mycotoxins like aflatoxin, 
fumonisin and others are very important tasks because 
mycotoxins are toxic for animals and humans. Reflectance 
and transmittance VIS and NIR spectroscopy are applied 
to detect fumonisin in single corn kernels infected with 
Fusarium verticillioides (Dowell et al., 2006). A method for 
determination of Fusarium graminearum infection is proposed 
in (Paliwal et al., 2003b). The classification accuracy reaches 
to 100% for individual samples. Transmittance spectra 
(500 to 950 nm) and reflectance spectra (550 to 1700 nm) 
are suggested as tools for aflatoxin determination in single 
whole corn kernels (Pearson et al., 2001). The authors use 
discriminant analysis and partial least squares regression for 
spectral data processing. The best results are obtained using 
two feature discriminant analyses of the transmittance data. 
A NIR spectroscopy (NIRS) method for estimation of sound 
kernels and Fusarium-damaged kernels proportions in grain 
and for estimation of deoxyinivalenol levels is proposed in 
(Peiris et al., 2010). The method classifies Fusarium damaged 
kernels with an accuracy of 99.9%. A neural network based 
method is developed for deoxynivalenol levels determination 
in barley using NIRS from 400 to 2400 nm (Ruan et al., 
2002). Fourier transform NIRS is applied for rapid and non-
invasive analysis of deoxynivalenol in durum and common 
wheat (Girolamo et al., 2009). A qualitative model for 
discrimination of blank and naturally contaminated wheat 
samples is developed. Classification accuracy of the model is 
69% of the 65 validation samples.

A comparatively new approach for grain quality assessment 
is based on the Hyperspectral Imaging System (HIS). A 
HIS get data about object spectra at some regions (pixels) 
of the object area. Every pixel contains spectral reflection 
data for many narrow situated spectral bands usually in VIS 
and NIR spectrum. Spectral data is normally presented as 
a hyperspectral cube. HIS could be considered as a variant 
of a color image analysis, where the object image is divided 
into pixels, every pixel is analyzed using multiband spectral 
analysis instead of three band analysis (R, G, B).   

The hyperspectral analysis is applied for assessment of 
different grain features.  For example, Mahesh еt al. (2010) 
use HIS for developing class models of different wheat 
varieties in Western Canada. The grain samples are scanned 
in NIR spectrum (960 – 1700 nm) at an interval of 10 nm. 75 
different values of the intensity of the reflection are obtained 
from hyperspectral images and they are used for class model 
development. These models assure about  90% classification 
accuracy.

NIR spectroscopy is applied for assessment of grain 
moisture level too (Mahesh et al., 2008a,b; Mahesh et 
al., 2010). The authors present a new method using NIR 
hyperspectral imaging system (960 – 1700 nm) to identify five 
western Canadian wheat classes at different moisture levels. 
They are found that the linear discriminant analysis (LDA) 
and quadratic discriminant analysis (QDA) could classify 
moisture contents with classification accuracies of 89 – 91% 
and 91 – 99% respectively, independent of wheat classes. 
Once wheat classes are identified, classification accuracies of 
90 – 100% and 72 – 99% are observed using LDA and QDA, 
respectively, when identifying specific moisture levels.

The HIS (350 – 2500 nm) is used for assessment of protein 
content in wheat grains (Wang, 2004) too.

Materials and Methods

Color image analysis. Grain groups and subgroups 
Some features of grain sample elements, which are 

in principle evaluated by an expert on the basis of visual 
estimation, are assessed using CVS within the frame-
work of this investigation. These features are related to the 
appearance, the color, the shape and the dimensions of the 
grain sample elements. 

Groups (classes) and subgroups (subclasses) in which the 
corn grain sample elements are distributed are presented in 
Table 2. The tree normative quality classes are based on the 
corresponding color and shape subclasses presented in the 
same row of the Table 2.

Because the color and shape features are extracted and 
represented in a different manner, it is expedient their 
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assessment to be made separately. After that the results from 
the two assessments have to be fused to obtain the final 
classification to one of the normative classes. Color and shape 
groups are divided in several subgroups in order to simplify 
the classification procedure. Color features are divided 
in 8 basic classes corresponding to the typical of different 
sample elements color zones and one additional class that 
corresponds to the non-grain impurities (it is impossibly to 
define a compact class for non-grain impurities). The sample 
elements are divided in 3 basic shape classes corresponding 
to the whole grains, broken grains bigger then the half of 
whole grain and broken grains smaller than the half of the 
whole grain, and one additional class that corresponds to the 
non-grain impurities. Each of the three basic shape classes is 
divided in 6 shape subclasses.

Features extraction from images
 RGB, HSV, XYZ, NTSC and YCbCr color models are 

used for extracting the object area from background and for 
different color zones extraction in the frame of object area. 
These zones are typical of the standard grains, heat-damaged 
grains, green grains, smutty grains, infected (with Fuzarium) 
grains, bunt and non-grain impurities. Furthermore four 
color texture models (Mladenov, 2008b) are development 
for this purpose. It is expected they will better underline the 
difference between the color zones in the input RGB image. 

Ten–dimensional descriptions are applied to represent 
the shape of the grain sample elements (Mladenov et al., 
2011a,c). The following procedure is realized to obtain the 
shape description. First, the binary image of the object area is 
created. After that the object’s peripheral contour is extracted 
and the bisection line of the object contour is found. An odd 

number of cross-sections perpendicular to the bisection line 
are built (Figure 1).

The relative length hi = si/D of the cross–sections, as well 
as the size and the sign of the difference between two neighbor 
cross–sections 21 ∆−∆=∆i  are calculated. Finally, the object 
shape description is presented in the following form:

( )nnhhhshX ∆∆∆= ,,2,1,,,2,1  		
	 (1)

The contour line of the corn kernels has a huge asymme-
try along to the bisection line. It is easy to locate the germ in 
the whole grain and to build contour descriptions and models 
with proper orientation. For broken grain, depending on what 
part of the whole grain is remained (with the germ or without 

Table 2
Corn grain sample classes and subclasses
Normative (quality) classes Color classes Shape classes
1cst - standard kernel (whole grains and 
broken grains bigger than the half of the 
whole grain,) with appearance, shape and 
color typical of the variety

1cc- grains with color typical of the 
variety, back side

1csh- with typical of the whole grains 
variety shape

2cc- grains with color typical of the 
variety, germ side

2csh- broken grains bigger than the 
half of the whole grain

2cst-grain impurities: broken grains smaller 
than the half of the whole grain, heat-
damaged grains, small grains, shrivelled  
grains, green grains, sprouted grains, 
infected (with Fusarium) grains, smutty 
grains.

3cc- heat-damaged grains

3csh- broken grains smaller than the 
half of the whole grain and small and 

shrivelled grains

4cc- green grains
5cc- mouldy grains
6cc- smutty grains

7cc- infected (with Fusarium) grains
8cc- sprouted grains

3cst-non-grain impurities: corn-cob 
particles, leaf and stem fractions, pebbles, 
soil and sand, as well as harmful elements

9cc- non – grain impurities 4csh- non – grain impurities

Fig. 1. Object shape description: D – length of the 
bisection line; hi = si/D – length of a cross–section; 

21 ∆−∆=∆i  - difference between neighbor cross–sections
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it) the contour descriptions could be sufficiently different. It 
is necessary to define two types of descriptions and models 
for 2csh and 3csh classes (for its corresponding subclasses): 
for broken grain where the germ exists in the remaining part 
of the grain and where it does not exist. The all shape groups 
are divided into 18 subgroups (subclasses). 

Spectra analysis. Grain groups and subgroups
The spectra analysis is used to evaluate the color and tex-

ture features of grain groups like  Fusarium infected grains, 
shriveled  grains, sprouted grains, smutty grains and non 
grain impurities.  The color image analyses doesn’t enable to 
obtained sufficiently precise assessment of such features.

The groups and subgroups in which the corn grain sam-
ple elements are distributed based on the spectra analysis are 
shown in Table 2.

Features extraction from spectra and data 
dimensionality reduction

Different methods like Principal Component Regres-
sion, Partial Least Squares Regression, Principal Component 
Analysis, Hierarchical Cluster Analysis and other methods 
are applied for developing a model to predict a property of in-
terest, as well as for feature extraction and large and complex 
spectra data reduction. Methods like K-Nearest Neighbors 
(KNN), Linear Discriminant Analysis (LDA), Quadratic 
Discriminant Analysis (QDA), Cluster Analysis (CA), Sup-
port Vector Machines (SVM), Neural Networks (ANN), and 
Soft Independent Modeling of Class Analogy (SIMCA) are 
mainly used for assessment of different grain features using 
data from grain spectra. 

The spectral characteristics are obtained using QE65000 
spectrophotometer. Each characteristic is a vector with about 
1500 components. Principle Component Analysis (PCA) and 
combination of Wavelet descriptions and PCA are applied 
for extracting typical features from object spectra and for 
spectral data dimensionality reduction. Тhе Wavelet1(detail 
coefficients) and Wavelet2  (approximation coefficients) and 
the Haar, Daubechies2, Coiflet2, Symlet2 wavelet functions 
are used in this investigation. The level of decomposition is 
varied from m = 1 to m = 4. The most informative wavelet 
coefficients are chosen using PCA method.

Grain quality assessment fusing data from image and 
spectra analyses 

Because the color and shape features are extracted and 
described in a different manner, the assessment of these char-
acteristics is separately done. After that the results from the 
two assessments are fused in order to obtain the object’s final 
categorization to one of the normative classes.

Different variants of data fusion schemes are developed 
at different stages of the study (Mladenov et al., 2011c), the 
schemes developed could be associated with hierarchical 
clustering algorithms. Their typical feature is that different 
criteria for class merging are used at different levels of data 
fusion.

Variant 1 - The First scheme uses a simplified fusion 
scheme. It is presented in Figure 2. 

The input data (input classes) are separated in two groups 
– data about object color characteristics and object shape 
data. The first group consist of 10 color zones typical of the 
corn grains. These are regions of pixels in the grain image 
with similar color characteristics. The color zones were ex-
tracted from kernel images within the framework of a pre-
liminary investigation.  

The second group consists of 18 shape subclasses (1scsh, 
2scsh,…, 18scsh). The first six of them correspond to differ-
ent shape models of whole grains, the next six – to models 
of broken grains bigger than the half of whole grain and the 
last six – to models of broken grains smaller than the half of 
whole grain.

The color class (1cc, 2cc, …, 8cc) is determined on the ba-
sis of preliminary defined combinations of color zones at the 
first stage of fusing the results from the color analysis. The 
shape subclasses are merged into one of the three main shape 
classes (1csh, 2csh and 3csh).

At the second stage of the analysis the fusion of color and 
shape classes is made in order to form the final decision of 
object classification in one of the three normative classes 
(1cst, 2cst and 3cst). The assessment whether the shape of the 
object is typical of one of the three classes or not, is used as a 
fusion criterion for color classes 1cc to 5cc. For 6cc, 7cc and 
8cc classes the shape is not important at all.

Variant 2 - The second scheme (Figure 3) uses color and 
combined topological models of typical color zones. The 

Fig. 2. Data fusion of the color and shape characteristics 
based on an image analysis only
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topological models represent the plane distribution of the 
color zones within the object area. A set of color topology 
models (when 3 or more typical for the kernels color zones 
are found Figure 4a) and combined topology models (when 
only 2 typical color zones are found Figure 4b) is preliminary 
defined. The combined topological models represent the 
plane distribution of some shape element (kernel tipcap or 
crown region) and the color zones found.

The final categorization when such topology is found is 
performed on the base of the object area only. The object 
shape and the object area are important for the final catego-
rization, when one typical color zone is found. For 6cc, 7cc 
and 8cc classes the shape is not important at all.

Variant 3 - The third scheme (Figure 5) fuses color 
characteristics extracted from spectra and shape charac-
teristics extracted from images.  This is because the col-
or class recognition is more precise when we use spectra 

analysis instead of image analysis. The main criterion 
for final categorization is the object color class. The 
correspondence of the object shape and/or the object area 
to the typical for the grain sample elements shapes is an 
additional criterion.

The variants 1 and 2 of color and shape data fusion could 
be associated with the first level of multisensory data fusion 
(Direct fusion of sensor data (Liggins et al., 2008), we can 
consider the results from color and shape analyses as signals 
obtained from two different sensors (the shape and the color 
are extracted and presented in a different way). 

The third variant of data fusion is a typical example of 
third level of multisensory data fusion (Decision level fu-
sion). The color and shape data are obtained from two dif-
ferent sensors – spectrophotometer and RGB camera. This 
data is separately processed and after that the results are 
combined to get the final decision.

Fig. 4. Color (a) and combined (b) topology

Fig. 3. Data fusion of color and shape characteristics based 
on an image analysis and  grain topological models

Fig. 5. Data fusion of color characteristics extracted from 
spectra and shape characteristics extracted from images
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It is expected that the data fusion procedures can improve 
the final classification in normative classes in comparison with 
the variants, when the categorization is made using object 
color data or object shape data only. This expectation is based 
on the assumption, that the fusion procedure can ignore or 
decrease some of the factors, which determine big errors of the 
final classification, when we use object color or object shape 
data only. The effectiveness of the proposed methods for data 
fusion is confirmed with the results presented in the tables.

Classification of the grain sample elements
Specific classification strategy, classifiers, and validation 

approach (Mladenov, 2011a,b) are applied for the categorization 
of the grain sample elements, which are conditioned by the 
specificity of the classification tasks.

Classification approach
If the classes (related with the color, shape, PCA and 

Wavelet + PCA descriptions) are presented in the feature 
space, a part of them (1cc, 2cc,…8cc) will form comparative-
ly compact class regions. The sets of descriptions extracted 
from the grain sample training sets are used for developing 
the models of these grain sample groups. Each class model is 
presented by the class centre (the average value of the class 
training data) and the class boundary surface. The bound-
ary surface is determined through a threshold value of the 
covariance of the class training data. A correct model for the 
9cc class (non-grain impurities) could not be created because 
the characteristics of the elements of this class could be suf-
ficiently different in each subsequent grain sample. 

As a correct model for the 9th grain group could not be 
created, a part of the descriptions of such objects of the testing 
set could get into the boundaries of the other eight classes. 
A big part of them would get outside the class regions and 
could be located in a random place in the feature space. These 
descriptions could be considered as noisy vectors. It could 
be assumed that the comparatively compact class regions 
of the objects from the first eight groups are submerged in 
a noisy environment. Therefore the task for categorization 
of the grain sample elements can be interpreted as a task 
for classification in classes, whose boundaries have definite 
shapes, dimensions and location in the feature space, and 
they are situated in a noisy environment (Mladenov, 2011a).

Under this formulation, the use of popular strategies like 
LDA, CA, SVM, KNN and some other methods, which build 
boundaries between class regions, is obviously not a good 
choice. This is due to the fact that for the class 9cc a correct 
model cannot be created. 

Furthermore if there are too big deviations of the actual 
values of the object characteristics and intensive measure-

ment noise, the class areas can be overlapped. Very often 
correct information about prior probabilities of the classes 
is missing. This makes the classification problem more com-
plex. If we use a classifier, which demands the prior prob-
abilities to be known (for example Bayesian classifier), the 
training procedure has to be implemented using the prior 
probabilities obtained from the number of elements in train-
ing sets. When we assess quality of an unknown sample, the 
ratio of the number of elements from different classes could 
be sufficiently different from this ratio in the training sets. 
The classifier decision can be sufficiently different from the 
optimal decision under these circumstances. In this case the 
classification task is reduced to a task for approximation of 
overlapping class areas when the classes are situated in noisy 
environment and correct information for class a priori prob-
abilities is missing.

Classifiers. The task for grain class modelling is reduced 
to a task for approximation of the boundaries of the grain 
class regions. For this purpose classifiers based on Radial 
Basis Elements (RBEs) could be used. Such classifiers will 
easily perform the approximation of the class regions and 
will simplify the classification procedure. 

The following classifiers (Mladenov et al., 2011c) are used 
for class area approximation: CSRBE, CDRBE and CRBEP. 

Classification accuracy
The accuracy of classification procedure is evaluated on 

the bases of the following classification errors:
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where eо (classification error rate) gives the relative part of 
all incorrectly classified objects, were N is the number of 
classes.
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Test Setup
The hardware system consists of the following main 

components: computer vision system (CVS) (5) and 
spectrophotometer (4) (Figure 6).  The CVS includes two 
color CCD cameras (1) which give a possibility to obtain color 
images of investigated object (2) in two planes (horizontal 
and vertical). The illuminant system (3) is used for direct 
object illumination. The reflectance spectral characteristics 
are obtained using spectrophotometer type QE65000 (4). The 
specifications of the camera, lenses, spectrophotometer and 
computer are presented in Table 3.

All investigations are carried out in laboratory conditions 
with a constant artificial lighting. Investigations in industrial 
environments are not made. The object color images are ob-

tained in a dark room. The objects are separately placed on 
a color pad with a color different from the grain sample ele-
ments. It allows the object zone to be accurate extracted from 
the background.

Results and Discussions

Training and testing sets
The developed procedures for grain sample quality 

assessment are trained, validated and tested with sets presented 
in Table 4. The training and testing sets include a number of 
different elements (whole grains, broken grains, etc.) 

The results from objects classification in shape and color 
classes are presented in Table 5. All classifiers described in 
the section “Classifiers” are used in the investigation. The “se-
lected classifier” is the classifier with the best performance.

The results from objects classification in normative classes 
using the three variants of data fusion are presented in Table 
6. Two classifiers are placed in the field “Selected classifiers”. 
The first classifier is applied in color class recognition and the 
second classifier is used in shape class recognition.

The test results in shape class recognition show that the rate •	
of objects from class 1csh assigned to other classes is com-
paratively small (4.9%). On the other hand, the rate of ob-
jects assigned to this class which actually belong to other 
classes is sufficiently bigger (35.2%). The rate of objects 
from class 3csh assigned to 2csh and 4csh is big too.
The classification error rate of objects from class 3csh (parts •	
of kernels) is large. This is an expected result because it is 
impossible to define some standard shape for objects from 

Table 3
Technical specifications of camera, lens, spectrometer, computer and lighting system
Name Information
Color camera
DFK 31AU03

Color digital video camera with USB interface, 1/3” Sony CCD sensor with progressive 
scanning, resolution – 1024х768 pixels; 

Camera lens
T2Z 3514 CS

Lens with variable focal length – 3.5 to 8 mm, diaphragm – from 1.4 to infinity,  
CS – assembly, MOD 0.3m;

Computer system
Dell Vostro 1720

CPU - Intel Core 2 Duo P8700 (2.53 GHz, 3MB L2 Cache, 1066 MHz FSB)
RAM          - 4 GB (2x2048 GB) DDR2, 800 MHz
Video card - NVIDIA GeForce 9600M GS 512MB

Spectrometer
QE65000

Detector: Hamamatsu S7031-1006;
Range: 350-1000 nm;

Resolution: 1024 x 58 pixels;
Optical resolution:  ~0.14-7.7 nm FWHM;

S/N ratio: 1000:1;
ADC: 16 bits;

Dynamic range: 7.5 x 109, 25000:1 for single measurement;
Integral time: 8 ms to 15 min ;

Adjusted linearity: >99.8%;
Lighting system
Fluorescent lamps

The lighting system is compound of two ring-shape fluorescence sources with different 
diameters.  It is used for direct illumination of investigated objects. They are placed so that 

the light can uniformly illuminate the object.  

Fig. 6. Test Setup. 1- color CCD camera; 2- investigated 
object; 3- illuminant system; 4- spectrophotometer;  

5- computer vision system (CVS)
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this class. In many cases even a qualified expert will not 
recognize such objects if no color characteristics but only 
shape is taken into consideration. During the classifiers 
training models of broken kernels are created on the basis 
of whole kernels models and that is why the training sample 
classification error rates for classes 2csh and 3csh are small. 
This explains the big difference between training and test-
ing classification results for these two classes.
The testing error in color class recognition using spectra anal-•	
ysis (7.3%) is acceptable bearing in mind the specific investi-
gation conditions and the diversity of grain sample elements. 
The comparative analysis of the results obtained using •	
different variants of classifier validation, training and 

testing confirms the effectiveness of the classification 
strategy, classifiers, validation approach and data models. 
For example, if we use the three data models: PCA, Wavelet1 
+ PCA and Wavelet2 + PCA the training errors are 6.8%, 
6.3% and 10.3% respectively using the CDRBE classifier. 
The validation approach (when the non – grain impurities 
are included in validation procedure, but are excluded from 
training sets) decreases the testing error 3.8 times (from 
27.6% to 7.3%) in comparison with the traditional validation 
approach (when the non – grain impurities are simultaneously 
excluded or included in validation and training sets). The 
choice of an appropriate classifier for specific classification 
task has an influence over the classification accuracy too. 

Table 4
Training and testing sets

Color classes recognition using CVS
Classes 1cc 2cc 3cc 5cc 7cc 8cc 9cc
Training sets 10 10 12 15 18 19
Testing sets 47 81 44 24 74 39 168

Object shape recognition
Classes 1csh 2csh 3csh 4csh
Training sets 120 135 135
Testing sets 122 63 11 256

Color classes recognition using spectra analysis
Classes 1cc 2cc 3cc 5cc 7cc 8cc 9cc
Training sets 120 120 80 53 192 42 536
Testing sets 30 30 20 13 48 11 134

Table 5
Classification errors in shape and color classes recognition

Color and shape class recognition

Shape class recognition Color class recognition
using CVS

Color class recognition
using spectra analysis

Selected classifiers CRBEP CDRBE CDRBE
Wavelet1+PCA model

Errors Test. errors Test. errors Test. Errors
Class gi,% ei,% gi,% ei,% gi,% ei,%
1 39.5 5.7 8.9 8 0 15.2
2 62.0 69.8 8.3 4.9 0 5.1
3 87.5 77.8 0 15.9 0 0
4 21.9 43.1
5 79.4 8.3 4.5 12.5
6
7 35 13.5 19.5 5.4
8 0 5.3 0 10.3
9 23.2 68.4 12.0 6.6

e0=35.6% e0=30.6% e0=7.3 %
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For example, the training errors obtained using the CDRBE, 
CSRBE and CRBEP classifiers and PCA data model are 
6.8%, 72%, and 7.3% respectively.
The classification errors in color class recognition using •	
spectra analysis are sufficiently smaller than the errors us-
ing image analysis. For example, the testing errors are 1.3% 
and 10% respectively using the two approaches when the 
non grain impurities are excluded from the validation and 
testing sets. When we include the non grain impurities in 
validation and testing sets these two errors are 7.3% and 
42%. The big difference between the two errors can be ex-
plained by the fact that the object spectral characteristics 
contain not only information for objects color character-
istics, but for their surface texture too. Although typical for 
some grain groups color zones are found in a big part of non 
– grain impurities, the surface texture of these elements is suf-
ficiently different from the typical for the grains. 
Object classification in normative classes (1cst, 2cst and 3cst) •	
includes complex assessment of color and shape character-
istics of the investigated objects. For this purpose color data 
and shape data are fused. The data fusion procedure improves 
sufficiently the final classification results. The classification 
error rate e0 in normative classes using CVS (Selected vari-
ant CDRBE–CRBEP) is 15.3% when data fusion Variant 1 
is used and 8.6% when Variant 2 is used, while the errors of 
object color zones extraction and object shape recognition are 
30.6% and 35.6% respectively. When we use Variant 3 for 
classes’ recognition the classification error rate e0 decreases 
about 1.6 times in comparison with the better result obtained 
using CVS. This is due to the fact that the spectra analysis 
gives the best result in color classes’ recognition.

Conclusions

The results from the investigation at this stage of the IN-
TECHN project implementation concerning grain sample 

quality assessment using complex assessment on the basis 
of color image and spectra analyses can be summarized as 
follow:

The developed approaches, methods and tools for grain •	
samples quality assessment based on the complex analysis 
of object color, object surface texture and object shape 
give an acceptable accuracy under specific experimental 
circumstances.  The error rate e0 = 5.3% of the final 
categorization in the normative classes can be accepted as a 
good result at this stage of project implementation.
The data fusion procedure improves sufficiently the final •	
classification results. The classification error rate e0 using 
CVS is 15.3% when Variant 1 is used and 8.6% when Vari-
ant 2 is used, while the errors of object color zones extrac-
tion and object shape recognition are 30.6% and 35.6% re-
spectively. 
According to the minimal quality requirements of grain sam-•	
ples defined in Bulgarian Standard Regulation 1272/2009 
the impurities (grain class 2cs and non-grain 3cs) in a grain 
sample cannot be more than 12%. About 28% of standard 
grains are recognized as impurities using Variant 1. This 
means that the error is bigger than the permissible percent-
age of the impurities and this variant is not applicable for 
the analyses of real grain samples.  The errors of the Variant 
2 and 3 are permissible from the point of view of the Regu-
lation 1272/2009. Variant 3 is preferred because the error 
(these are objects from third and second class recognized 
as objects from first class) is about 2 times smaller than the 
same error of the Variant 2.

The results obtained show that the choice of an appropriate 
procedure for fusion the results from color characteristics 
and objects shape analysis has a significant influence over 
the final classification accuracy. When we use the second 
algorithm (Variant 2) which is based on color or combined 
topology assessment the classification error rate decreases 
about 1.8 times compared to the first algorithm (Variant 1) in 

Table 6
Classification errors in normative classes recognition 

Color and shape data fusion
Fusion variant Variant 1 Variant 2 Variant 3

Selected classifiers CDRBE-CRBEP CDRBE-CRBEP CRBEP-CDRBE
Wavelet1+PCA model

Errors Test. errors Test. errors Test. Errors
Class gi,% ei,% gi,% ei,% gi,% ei,%
1cst 7.7 28.2 4.2 1.7 2.7 6.8
2cst 27.9 32.2 17.2 14.4 0.8 12.7
3cst 12.7 0.8 6.2 9.1 8.4 0.4

e0=15.3% e0=8.6% e0=5.3 %
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which color class assessment is based on the registration of 
the typical color zones combinations only. When we fuse the 
results from color classes recognition obtained on the basis 
of spectra analysis and shape classes recognition obtained on 
the basis of image analysis (Variant 3) the final classification 
accuracy is increased 2.9 and 1.6 times in comparison with 
Variant 1 and Variant 2 respectively.
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