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Abstract
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It is often the case that producers and users of agricultural commodities hedge the exposition in a commodity (e.g. an 
expected purchase, expected sale, commodity held on stock, commodity being processed) with a derivative position in another, 
highly correlated market variable. The main reason is that while the commodity traded in a public derivative market, such as 
CBOT, is highly standardized, spot markets exist for a wide variety of types of that commodity (e.g. different cultivated spe-
cies, different classes, different qualities etc.). In general, prices of various types of the commodity traded in the spot markets 
can be regarded as functions of the price of the standardized commodity. When an open position in the non-standardized type 
y of the commodity is hedged, using the standardized derivative x, the basic risk-management issue is to estimate the hedge 
ratio between y and x (or, more generally, the long-term average price relationship between y and x) properly in order to 
minimize risk and subsequent losses. The hedge ratio is usually estimated from historical market data. We address the question 
of long-term stability of the hedge ratio and propose a new method for estimation of the hedge ratio allowing an improvement 
of the hedging relationship using stability analysis. We illustrate the method by an example. We also present a user-friendly 
visualization technique for the method.
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Introduction

Companies producing, consuming, processing or 
storing agricultural commodities often face the risk 
of changes in market prices. They implement various 
hedging strategies to minimize that risk. For example, a 
wheat producer may wish to lock future prices of wheat 
to protect her/him from a decline in spot prices. On the 
other hand, a consumer may wish to protect against an 
increase in spot prices. A wheat processing company, 
whose inputs and outputs are sensitive to wheat prices, 
might wish to hedge the value of wheat held on stock. 

The most usual way of getting protection is to take a 
derivative (forward) position in the commodity offset-
ting the open spot position.

This basic strategy does not apply to the agricultural 
commodities only; the same strategy is used e.g. in the 
case of foreign exchange risk. There is a significant 
difference: while the FX market is homogenous, an 
agricultural commodity usually exists in various types, 
cultivated species or qualities. However, the markets 
where futures (or other derivatives) suitable for hedging 
of the commodity risk are traded admit contracts with 
highly standardized commodities only. Now the main 
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problem arises. Say that a producer of Class A wheat 
wishes to hedge her/his open position (i.e., future sales 
of Class A wheat) via traded futures. Only standardized 
contracts, say Class B wheat futures are available in 
the market. It is clear that prices of the two variables 
are highly correlated. Hence, it makes sense that the 
producer hedges her/his position in Class A wheat us-
ing Class B wheat futures. The question is what volume 
of Class B wheat futures shall be bought/ sold to hedge 
the open position in one ton of Class A wheat? That 
ratio is known as the hedge ratio. The main aim of this 
text is to present a new method for its estimation.

As an example of standardization, we can look at 
Chicago Board of Trade (CBOT) Rulebook, Chapter 
14 Wheat Futures, Rule 14104 Grades/Grade Differen-
tials. At contract price, the following types of wheat are 
delivered: №2 Soft Red Winter, №2 Hard Red Winter, 
№2 Dark Northern Spring, №2 Northern Spring. At ¢3 
premium, the following types are delivered: №1 Soft 
Red Winter, №1 Hard Red Winter, №1 Dark Northern 
Spring, №1  Northern Spring. Wheat which contains 
moisture in excess of 13.5% is not deliverable. A taker 
of delivery of wheat shall have the option to request in 
writing load-out of wheat which contains no more than 
four parts per million of deoxynivalenol (vomitoxin). 
All wheat shipping certificates shall be marked as either 
2 parts per million (ppm) deoxynivalenol (vomitoxin), 
3ppm vomitoxin, or 4ppm vomitoxin. Shipping certifi-
cates marked as 2ppm vomitoxin shall be delivered at 
contract price, while shipping certificates marked as 
3ppm shall be delivered at a ¢12 per bushel discount 
and shipping certificates marked as 4ppm shall be de-
livered at a ¢24 per bushel discount. Moreover, further 
conditions are often specified, e.g. delivery terms such 
as FOB Gulf of Mexico. 

The cited Rule in fact establishes a fixed relationship 
between prices of different wheat types. For example, 
if x denotes the price of №2 Soft Red Winter with 2ppm 
vomitoxin and y denotes the price of №1  Soft Red 
Winter with 4ppm vomitoxin, then we have a linear 
relationship between y and x in the form 

y = x – ¢21.					     (1)

This is just a trivial example of a linear relation-
ship between the prices of two (slightly) different, but 

perfectly correlated commodities y and x; the perfect 
correlation is a consequence of the cited Rule. 

However, in practice, more types of wheat are 
traded in OTC markets for which a fixed relationship 
of the type (1) is explicitly stated by no Rule and holds 
only approximately. For example, the market maker 
has excluded wheatcontaining moisture exceeding 
13.5%. Prices of such a commodity are known from 
spot OTC markets, but a position in that commodity 
cannot be directly hedged via a CBOT futures con-
tract. 

Hedging then can be done indirectly: a long-term 
relationship of the type (1) between the price of a com-
modity y, for which futures are not available, and the 
futures on commodity x can be estimated from histori-
cal spot prices of y and quotes of x. Usually, the trivial 
form (1) is too restrictive: a more general form 

y = α + λx + random error,

where α and λ are parameters, will be used in the next 
section. 

The parameter λ, called hedge ratio, is essential 
when the price of the commodity y is, in the long run, 
a multiple of the price of x. To give an example from 
a non-agricultural market: in the airline industry, it is 
well known that kerosene prices are approximately 
equal to 130% of Brent crude oil. This example shows 
that the method of this text can be useful also in other 
industries.

The main problem. When such a hedging relation-
ship is established, the crucial question is to estimate 
the hedge ratio properly. For example, shall one ton 
of y be hedged using futures with the volume of 1.2, 
1.3 or 1.4 tons of x? The hedge ratio, i.e. the ratio be-
tween a unit of y and the number of units of x, is the 
crucial factor determining the quality of the hedging 
relationship. If the hedge ratio is selected too low, then 
an unhedged position in y remains open, which may 
result in significant losses. On the other hand, if the 
hedge ratio is selected too high, then a new speculative 
position in x originates, which may result in significant 
losses as well. The risk-management aim is to select 
the hedge ratio in order the position be fully hedged. 
In the next sections, we shall present a method for its 
estimation. 
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Model

The situation is: an open position in a variable y, 
which is not traded in futures market, is to be hedged 
using a derivative position in another variable x, which 
is available at the futures market. The task is to deter-
mine ‘the best possible’ hedge ratio between x and y at 
the commencement of the hedging relationship. 

The hedge ratio λ is estimated from historical data. 
A long-term relationship between y and x is usually as-
sumed to be of a form as

Δyt = λΔxt + εt,
Δyt = α + λΔxt + εt,
yt = λxt + εt,
yt = α + λxt + εt,
Δlog yt = λΔlog xt + εt,
Δlog yt = α + λΔlog xt + εt,

where t is the index of time, Δ denotes the difference 
operator and εt is the random error.

Let νt be homoskedastic with unit variance. The ran-
dom errors εt are usually assumed in one of the forms

εt	= σνt,
εt	= xtσνt,
εt	= ytσνt,

where σ > 0 is a parameter. As an example, important in 
practice, we shall assume the model

yt = α + λxt + xtσνt;				    (2)

however, the method presented further is applicable for 
other models as well. (The fact that variance of the error 
term is proportional to the price level xt is a traditional 
feature of financial time series.)

The hedge ratio λ can be estimated as the absolute 
term in the homoskedastic model
 1

    t
t

t t

y
x x 				  

(3)

which is equivalent to (2).
We shall assume that νt’s are such that the model (3) 

can be estimated with Ordinary Least Squares (OLS).

Estimation of the Hedge Ratio

Prices of commodities, both on OTC and futures 
markets, are quoted for several decades. We assume 

that daily prices xt and yt with very long history are 
available. Our aim is to estimate λ in (3) as precisely as 
possible using the historical data. It is well known that 
the variance of  ̂  (where  ̂  is the OLS-estimator of λ) 
decreases with the number of observations. Hence, if 
we assume a long-term relationship (3), to get the most 
exact estimate of λ we should use all the historical data 
available.

However, on the other hand, it is doubtful whether 
y:x ratios from say 1950’s are relevant for estimation 
of the contemporary hedge ratio which is essential for 
contemporary hedging of y with x-futures. It is not 
clear whether the assumption that the relationship (3) 
remains stable over decades is reasonable. It seems 
more realistic to assume that the relationship (3) is 
stable in the short run (i.e., say months of a few years, 
which is the time horizon for which the hedging rela-
tionship is usually designed) while in the end it may 
be subject to changes. The short-run stability assump-
tion is crucial; otherwise, the hedging would not make 
sense.

The main question now arises: how long history of 
data shall be taken into account when estimating the 
hedge ratio λ in (3) in order

to minimize the variance of the estimator (i.e., to esti-•	
mate λ as exactly as possible) and, simultaneously,
to avoid estimation bias arising from possible insta-•	
bility of the value of λ in the long run.

We shall propose a method to deal with this prob-
lem. The problem of determination of the hedge ratio 
has also been addressed, from a different perspective, 
in Černý and Hladík (2010), Choudry (2009), Hla-
dík and Černý (2010, 2012), McMillan (2005), Lien  
and Shrestka (2008). We shall introduce a method, 
which is partially motivated by the approach applied in 
Černý (2008).

A Statistic for Testing Stability

Assume that the set of historical data x1, …, xn and 
y1, …, yn is available. Let us test the hypothesis

H:	 the relationship (3) is valid for all t ∈ {1, …, 
n} 
against the alternative

A:	 there is a time τ ∈ {3, …, n – 3} such that 
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where (α0, λ0) ≠ (α1, λ1) and τ are unknown parameters. 
Assuming that νt are N(0, 1) independent, we can con-
struct the log-likelihood ratio 
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where fA and fH denote the joint distribution of yt
xt  under 

A and H, respectively. If we assume that τ is fixed, we 
get the log-likelihood test for the existence of change in 
the regression relationship in time τ of the form

1: 1: 1:
22

n nRSS RSS RSSU t t
t s

+− −
= ,

if the standard error σ is known, or 
1: 1: 1:

1:

2
2

n n

n

RSS RSS RSSnU
RSS

t t
t

+− −−
= ⋅ ,

if σ is unknown (which is the most frequent case in 
practice). The symbol RSSi:j stands for the residual sum 
of squares from OLS-estimated regression 
 1
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where I denotes the unit matrix and || · || denotes the 
L2-norm.

Changing normalization, instead of Uτ we will use 
an equivalent statistic

1: 1: 1:

1:

n n

n

RSS RSS RSSV
RSS

t t
t

+− −
= .

The reason for preferring Vτ to Uτ is purely technical 
and will be apparent later. Relaxing the assumption that 
τ is fixed we obtain the statistic

{3, , 3}
max tt n

V V
∈ −

=


.					     (4)

We will also need the statistic V applied to a subset 
{i, i + 1, …, j} of the set of all observations {1, …, n}. 
Thus it will be useful to denote

:
: { 2, , 3}

max i j
i j tt i j

V V
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,				    (5)
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We shall need critical values for the statistic V (or 
Vi:j) under H. The statistic V, being the maximum of 
dependent B1, n/2 – 2-distributed random variables, has a 
complicated distribution; in fact, an exact formula is 
not known.

Fortunately, the statistic V is essentially the same 
statistic as investigated by Worsley (1983); this is why 
we have used Vt instead of Ut in (4). Worsley derived a 
Bonferroni-type approximation (see also Černý (2011)) 
of the distribution of V in the form
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Here, B and β denote the cdf and the pdf of the cor-
responding beta-distribution, resp. Using binary search 
over W(z), it is computationally feasible to derive the 
z0-quantile for V given the level z0. This z0-quantile will 
be referred to as the Worsley’s z0-critical value.

If we need to work with the test (5) instead of (4), 
i.e. if we are restricted to a subset of observations, the 
Worsley’s approximation gets the form

τ
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τ
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The z0-quantile derived by binary search over Wi:j(z) 
will be denoted 1

: ( )i jW z− .
If H is rejected, then (4) also suggests a natural esti-

mator of the unknown value τ of the form
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ˆ arg max t

t n
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∈ −
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,

or, in the restricted form,
:

:
{ 2, , 3}

ˆ arg max i j
i j t
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Our Method

Now we are ready to present the method for estima-
tion of the hedge ratio when hedging the open position 
in the commodity y, which is traded only in the spot 
markets, with the commodity x for which futures are 
available. Assume that the historical data x1, …, xn and 
y1, …, yn are sorted in the way that (x1, y1) are the most 
recent (say, today’s) prices and (xn, yn) are the endmost 
prices (say, quoted several decades ago).

The method estimates the hedge ratio from a set of 
historical data in a way that 

it maximizes the length of the historical period in •	
which the hedge ratio λ appears to be stable (this is 
essential for achieving low variance of  ̂ , i.e. for 
achieving an estimate which is as precise as possible); 
and
it excludes the history in which the value of •	 λ appears 
to be different from its contemporary value (this is 
essential for avoiding estimation bias).

The method can be summarized as the following 
algorithm. Assume that the test level z0 is fixed (say at 
5% or 1%).
{1} for t := 20 to n do
{2} 	   if 1

1: 1: 0( )t tV W z−> then stop and output out 1:ˆ: tt t=
{3} 	   end if
{4} next t
{5} stop and report “the hedge ratio is stable over the 
whole data set”.

If the algorithm terminates in {5} with a value τout, 
we get the information that we shall use the dataset 

{1, …, τout} for estimation of the hedge ratio; the data 
{τout + 1, …, n} are omitted. If the algorithm terminates 
in {4}, then we can use entire data set.

Remark. The chosen value 20 in {1} is arbitrary; 
any other reasonable value could be used.

Remark. It is suitable to take into account the 
fact that the estimator 1:ˆ tt in {2} could have estimated 
the true point of the most recent change in the hedge 
ratio inexactly. To the author’s knowledge, the exact 
distribution of t̂ under A is not known. It seems to be 
reasonable to get over the loss of a reasonable number 
of observations, say m (determined heuristically), and 
estimate the hedge ratio using the data set {1, …, τout – 
m} instead of {1, …, τout}. Giving up m observations, 
we increase the variance of the estimator of the hedge 
ratio; but this is offset by the fact that we avoid the 
possible bias resulting from an inexact estimate of the 
point of change. (A recommendation, how m should be 
chosen in practice, is subject to further research.)

The crucial property of the method {1} – {5} is that 
it is insensitive to the length of history of data available. 
(This is a well-known problem in econometrics: if two 
analysts have data sets for slightly different periods, 
they can achieve very different results). The method 
processes the data (xt, yt) from the most recent observa-
tions towards older observations. As soon as the data are 
sufficient to detect a point of change in the hedge ratio, 
the process is stopped and the history preceding the most 
recent point of change is dropped. For example, assume 
that we perform the analysis in Jan 2011. Assume that 
in May 2010 there was such a point of change. Then 
the method (if it detects the point of change correctly) 
only needs the data for the period, say, Jan 2010 – Jan 
2011. That is, the method stops in {2} with t = Jan 2010. 
The data from the period Jan – May 2010 brings the 
information that the hedge ratio had been different be-
fore May 2010. But the data preceding Jan 2010 are not 
processed at all; hence, the results of the method are the 
same regardless of whether the entire data set starts in 
2000, in 1990 or for example in 1930. (Many statistical 
methods process the entire available data set globally. 
Their results can thus be affected by very old observa-
tions. We have avoided this undesirable property.)

τ

τ τ

τ

τ τ
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Visualization of the Method, Stability of 
Τout and an Example

The method can be visualized in the following way. 
We plot the processes

1
1: 1: 0 1:ˆ, ( ),t t t t t tV t V W t W z t t−= ⋅ = ⋅ =  

for t = 20, 21, … with z0 = 5%-level and z0 = 1%-level. 
(The scaling factor t in the definition of tV  and tW  has 
been added, without loss of generality, to make Figure 2 
more transparent.) Such a plot also shows how stable 
the value τout output in {2} is. (We say that the value τout 
is fully stable if, for any t and 't  for which the condi-
tions 1

1: 1: 0( )t tV W z−>  and 1
1: 1: 0( )t tV W z−
′ ′>  are met, it holds 

1: 1: 'ˆ ˆt tt t= . Of course, by the stochastic nature of data, we 
cannot expect full stability; but we roughly say that the 
value τout is stable if it would not change too much if we 
did not stop in {2} and iterated further. In other words: 
when the if-condition in {2} is met, we do not stop the 
algorithm and iterate further (say, up to t = n). Whenever 
the if-condition is met, we plot 1:ˆ tt  in a graph (with t on 
the x-axis). If the resulting graph resembles a constant 
function, then the estimate is stable.)

In Figure 2, results of a simulated example are 
shown. We generated a trajectory of xt for t = 1, …, 500 
(which corresponds to 2 years if 1 year = 250 business 
days) as a lognormal random walk varying between 
$20 and $85, see Figure 1. The process yt was simulated 
using (3) with νt ∼ N(0, 1) independent and

σ = 0.1,   α = 0,   λ = 
1.3 for {1, ,169 },
1.4 for {170, , 500 }.

t
t
∈

 ∈



     
(6)

Observe that the variance is quite high: if the price 
of x is $100, the standard error is $10.

In Figure 2 it is apparent that the procedure {1} – 
{5} detects τout = 134, which is an inexact estimate (by 
(6), the point of change appeared 169 days ago).

If we don’t stop in the step {2} when the 1% level 
is first exceeded and iterate further, we arrive at the 
estimate τout = 149 (which is a value closer to the true 
value 169).

It can be seen in Figure 2 that the estimate τout = 149 
is stable. Hence, the method suggests to estimate the 
hedge ratio either using last 133 or last 148 observa-
tions, the remaining (“old”) ones being omitted.

We know that the true value of the contemporary 
hedge ratio is 1.4. The resulting OLS-estimates are
 ̂ from data t ∈ {1, …, 133} = 1.43 and  ̂ from data t ∈ {1, …, 148} = 1.46.

If we estimate the hedge ratio from the entire data 
set, we obtain a much worse value
 ̂ from data t ∈ {1, …, 500} = 1.23,
which is clearly biased by the “old” history when the 
value of the hedge ratio was 1.3. If the value 1.23 had 
been used, only 88% (= 1.23 ÷ 1.4) of the open position 
in y would be hedged (on average), while with the pre-
sented method we get an “over-hedged” position of 102% 
(= 1.43 ÷ 1.4) or 104% (= 1.46 ÷ 1.4), respectively.
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Fig. 1. Simulated evolution of prices of the hedged commodity (yt) and the 
hedging commodity (xt) as a function of time (t)  
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fig. 2. the process tV , Worsley’s 5% and 1% critical values ( tW ) and the process t  
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