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Abstract
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A new method for identification of texture in agricultural machinery with interpolation of biaxial anisotropy of elastic 
modulus of thin-plate polycrystalline elements has been developed. The dependence of shear modulus and modulus of longitu-
dinal elasticity as a function of an angular distribution of Poisson’s ratio, achieved by the method of ulrasonic critical-angle 
refractometry (UCR), has been derived.
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Introduction

Agricultural machinery is made up of very diverse 
in shape and size structural elements. In their produc-
tion details are subject to various processing opera-
tions, because of which significant residual stresses of-
ten appear. As they balance each other, their impact on 
polycrystal apriori structure can be determined by ex-
amining the emerging texture. Agricultural machines 
operate in a wide temperature range and are subjected 
to complex dynamic loads. Because of the texture, cor-
rosion arises and the simultaneous action of external 
mechanical loading and the residual stress reduces the 
operational resource. This effect is particularly strong 
after the tempering of steel bars and tubes, cutting and 
heat treatment of various details. The study of biaxial 
texture with diffraction (radiographic) method is too 
inaccurate for technical metals are polycrystalline ag-

gregates. On the other hand, the method of measuring 
the residual stresses by cutting the layers of the work 
piece surface and the measurement of deformation has 
occurred (and the method of trepanation) are too labor-
intensive and impractical in production. In general, 
non-destructive methods for control of the mechanical 
biaxial texture and associated residual stresses are not 
yet sufficiently developed in the context of their applica-
tion in the manufacture, repair and restoration of agri-
cultural machinery.

According to the accepted classification (Ushio et 
al., 1993), a thin-plate is considered a construction ele-
ment with thickness less than 3 mm.

A biaxial anisotropy appears in them, as the crys-
tallographic plane is parallel to the plane of rolling, 
and the crystallographic axes depend on its direction 
(Randle and Engler, 2000). Generally the dependence of 
the averaged values of the stresses  eff

ij ijmn mnC  and strains 
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 eff
ij ijmn mnC   

 in each point are defined by Hooke’s law (Ry-
chlewski, 1984):

 eff
ij ijmn mnC 

			 
(1)

where: eff
ijmnC  - tensor of the effective modules of 

elasticity. 
If  polycrystalline aggregates are constructed of  

FCC and BCC crystals (Face and Body Centere Cubic 
Lattice), it’s typical for Al, Au, Cu, Pb, Fe, W et al., in 
order to determine their deformation of elasticity the 
following three constants 11C , 12C , 44C  (modules of 
elasticity of third-order) are necessary.

In hexagonal crystals: Mg, Zn,Cd et al. the constants 
are five: 11C , 12C , 44C , 33C  and 13C  (Jones and 
March, 1973; Kocks et al. (eds.), 1998).

As the prevailing majority of construction elements 
are from the first kind, anisotropy can be calculated us-
ing the parameter of Ziner - cA .

Index of anisotropy  2 ( )c x yA /     depends on 
Cauchy relation for elastic constants:  

11 44x /C C   
and  12 44y /C C  . Actually ξy is a measure of approx-
imation to the model of Cauchy (at ξy=1 the strengths 
among the atoms do not depend upon the direction and

11 123C C= ).

Basic Equations and Problem 
Formulation

According to Voigt (1928), the maximum value of the 
shear modulus v

maxG G=  in permanent deformation 
of the polycrystalline aggregates can be calculated with 
the following equation (2):

44 2 3 5( )v / / A /cG C = +    		  (2)  

In the opinion of Reuss (Bunge, 1993) the minimum 
value of the same module  R

minG G=  (at constant ten-
sion exercised over the polycrystalline aggregates) can 
be calculated with the help of equation (3):

44 2 3 5( )R
c/ A /G C = +  			   (3)      

If ( )2max min
c max min T Tz G / G C / C= = , when 

we assume that TC  is speed of propagation of trans-
verse ultrasonic waves, then, following from (Lewi, 
2010), we can define cA :

2 25 13 12 1 0( ) cc cA A /z + =− −  		  (4)     
The classical thermodynamic theory of solid bodies 

(Hill, 1986) gives the possibility to determine the char-
acteristic value θD[K] (Debye temperature) in the next 
equation:

θD = 0.00362 ρ-1/6 M-1/3(10K0)
1/2 [ f(v)]-1/3,             (5)     

where:  ρ - density of solid body, g / cm3,
            Ma- atomic mass in units,
            K0 - modulus of volume elasticity, GPa, 
             v  - Poisson’s ratio,

    3 2 3 2
( ) (1 ) (3 3 ) 2 (1 ) (1.5 3 )

/ /
f / /        

- Debye  function.

Solution of the Problem

In the formula of Lindemann (Hoffmann, 2004), 
Debye temperature θD[K] is connected to the melting 
temperature Tm[K] by the next equation:

 2 3 5 3
0
* / /

D m ak T M  ,		  (6)     

where: 0 137*k ≈  .
From (5) and (6) for the polycrystalline continuum, 

we get:
 K0  / ρ

 = k0
** (Tm / Ma)

 [ f(v)]2/3,			   (7)      

where: 0
**k - material constant.

The even many-sided pressure does not cause a tex-
ture, so it is appropriate to express 0K   using G and v  
by the relation: K0 = G(1 + v) / (1.5 - 3v).

The parameters Tm, Ma and ρ do not depend or de-
pend to a very small extent on the changes of the tem-
perature, so we can define the biaxial anisotropy by the 
values of 

    1 1 1 1 , G       and     2 2 2 2 , G       in two 
optionally chosen directions, fixed with the polar an-
gles φ1 and φ2.

Based on (7), we get the dependence:
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Using the methods of ulrasonic critical-angle re-

fractometry (UCR), and the immersion effects of leaky 

(8)
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Rayleigh or Lamb waves (Lewi, 2010; Śliwinski, 2000), 
we can find vmin and vmax of thin-plate polycrystalline 
elements. The Figure 1 presents the changes of reflec-
tion factor

 
 ( )LR   of ultrasonic wave with frequency 

10MHz for thin-plate steel elements (UCR test : C0 = 
1.6 mm/μs).

They are presented as a function of refractive angle θ.  
Minimum  ( )LR   corresponds to the third critical an-
gle θR and CR = C0 / sinθR  is the group velocity of the 
leaky Rayleigh waves. For rotation in the plane orthogo-
nal to the plane of wave propagation (φ is the angle of 
rotation) occur changes in the value of the critical angle 

Rq∆ θR (Figure 2). They are the result of mechanical ani-
sotropy and occur in large plastic loads. With classical 
methods of ultrasonic measuring technique (Śliwinski, 
2000) can determine max

LC , min
LC  and the extremes of 

v(CR / CL). In this case, from equation (8) we get:
 

    
    

2 33 2

3 2

2 0 5 1

2 0 5 1

//

min minmax
c /

min max max

.G
z

G .

 

 

  
 
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  
 
    

(9)

     
By defining the value of zc the calculation of the pa-

rameter of Ziner (Lewi, 1988) from relation (10):

( ) ( )225 13 12 25 13 144 1c c cA z / z /= − + − −   (10)

Here we have to say that the changes in the values 
of G and v are reciprocal, so as when G –> Gmax we get   
v –> vmin and vice versa.

With steel sheets 0.25<v<0.3 and the speed of longi-
tudinal ultrasonic waves CL [mm/μs] varies in the inter-
val:  5.7 < CL < 6.1.

If in (7) we substitute the modulus of volume elastic-
ity

 
    0

2 1 1LK C     , after some simple cal-
culations we get E0 = ρCL

2 for the relation:
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(11)     

Here E0 = C11 is equivalent (effective) modulus of 
longitudinal elasticity of solid body.

For vmin= 0.25 and vmax= 0.3 we get from equation (11) 
the ultimate value of the relation:

 
 

and as a result of the experimental data follows that:

( ) 1 0702max min
L L

exp
C / C .= . 

The coincidence of the theoretical and experimental 
results confirms the adequacy of the model and proves 
its application for the needs of ultrasonic non-destructive 
control of anisotropy in thin-plate construction elements.

Conclusions
Ultrasonic testing with UCR methods of anisotro-

pic thin-plate elements (Imamura, 2003.) allows us to 

0

0.2

0.4

0.6

0.8

1

1.2

0° 10° 18° 28° 34° 44°

|ŔL (θ)|  

θR

Fig. 1. Ultrasonic wave reflection factor  ( )LR 
 
as 

a function of refractive angle θ for steel St18GS 
(immersion UCR-test, thickness of plate)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

0° 10° 20°
30°

40°
50°

60°
70°

80°

90°

100°

110°
120°

130°
140°

150°
160°170°180°190°200°

210°
220°

230°
240°

250°

260°

270°

280°

290°
300°

310°
320°

330°
340° 350°

R10 201020

Fig. 2. Directional angle decomposition of θR (φ) for 
thin-plate steel element with mechanical anisotropy
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determine the biaxial anisotropy of Poisson’s ratio v(φ). 
The obtained relation in (Lewi, 2010), who is charac-
teristic for polycrystalline aggregates (FCC or BCC 
type of crystal structure), gives the possibility to 
interpolate the values of G(φ) and E0(φ) from the 
experimental data. From the received formulas, we can 
calculate the value of the index of anisotropy Ac of thin-
plate structural elements in agricultural machinery.
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