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Abstract

Sabaghnia, N., R. Karimizadeh and M. Mohammadi, 2013. GGL biplot analysis of durum wheat 
(Triticum turgidum spp. durum) yield in multi-environment trials. Bulg. J. Agric. Sci., 19: 756-765

Durum wheat (Triticum turgidum spp. durum) breeders have to determine the new genotypes responsive to the environ-
mental changes for grain yield. Matching durum wheat genotype selection with its production environment is challenged by 
the occurrence of significant genotype by environment (GE) interaction in multi-environment trials (MET). This investigation 
was conducted to evaluate 20 durum wheat genotypes for their stability grown in five different locations across three years 
using randomized completely block design with 4 replications. According to combined analysis of variance, the main effects 
of genotypes, locations and years, were significant as well as the interactions effects. The first two principal components of the 
site regression model accounted for 60.3 % of the total variation. Polygon view of genotype plus genotype by location (GGL) 
biplot indicated that there were three winning genotypes in three mega-environments for durum wheat in rain-fed conditions. 
Genotype G14 was the most favorable genotype for location Gachsaran and the most favorable genotype of mega-environment 
Kouhdasht and Ilam was G12 while G10 was the most favorable genotypes for mega-environment Gonbad and Moghan. Ideal 
environment view of GGL biplot showed that location Gachsaran is more desirable test location than the other locations and 
genotype evaluation in this location maximizes the observed genotypic variation among genotypes for grain yield of durum 
wheat. Application of GGL biplots facilitated visual comparison and identification superior durum wheat genotypes for each 
target locations.
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Introduction

Durum wheat (Triticum turgidum spp. durum) is one of 
the most important cereal crops in the world and grown on 
only 8 to 10% of all the wheat-cultivated area (USDA 2009). 
Durum wheat is better adapted to semiarid environ than is 
bread wheat and is a crop adapted to marginal lands. In spite 
of its low cultivation, durum wheat is an economically impor-
tant crop because of its unique characteristics (protein content 
and gluten strength) and food industrial products (Sakin et al., 
2011). Iran imports considerable amount of durum wheat due 
to low quantity and quality of its own produced durum wheat. 
Durum wheat farmers are interested to new wheat cultivars 
due to both high mean yield and proper quality. In the im-
proving of new durum wheat genotypes, effects of climate 

and soil properties on grain yield are of great importance. 
Therefore, wheat breeders must attempt to select genotypes 
responsive to diverse environments for high grain yield be-
cause both mean yield and quality of durum wheat is influ-
enced by the environmental factors (Rharrabti et al., 2003).

New improved genotypes are tested in multi-environment 
trials (MET), to determine genotype performance before 
recommending them for production in a given location. Re-
search focusing on yield stability, or genotype by environ-
ment (GE) interaction, is necessary for plant breeders to de-
velop genotypes that respond consistently across test envi-
ronments (Yang et al., 2009). Usually, GE interaction occurs 
and studied genotypes response differently to environmental 
changes. There are different methods for analyzing and in-
terpreting GE interaction such as univariate (parametric and 
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nonparametric) and multivariate procedures (Lin et al., 1986). 
Among multivariate methods, linear-bilinear models are use-
ful tools for analyzing MET data and GE interaction inter-
pretation (Crossa Cornelius 1997). The additive main effects 
and multiplicative interactions (AMMI) and genotype plus 
GE interaction (GGE) biplot models are introduced as pow-
erful tools for effective analysis and interpretation of MET 
data in plant breeding programs (Zobel et al., 1988; Yan et 
al., 2000).

Although the measured yield is a combined result of the 
main effects of the genotype, main effects of the environment 
and GE interaction, only genotype main effects and GE in-
teraction are relevant to genotypes evaluation and mega-en-
vironment identification. Also, Gauch Zobel (1996) empha-
sized that genotype main effect and GE interaction are the 
two important sources of grain yield variation and must be 
considered in MET data for genotypes evaluation. Usually, E 
explains most (grater than 80%) of the total grain yield varia-
tion, while G and GE interaction are usually small (Yan Kang 
2003). For introducing a new method, Yan et al. (2000) used 
a site regression model (SREG), combined both G and GE 
sources, repartitioned this into an additive GE interaction and 
a crossover GE interaction, and proposed a graphical proce-
dure biplot (Gabriel, 1971) to use these effects (G and GE) 
and in exploring yield stability and cultivar recommendation 
in MET. The GGE biplot model is a multiplicative model that 
absorbs the genotypes main effects plus the GE interaction, 
which are the important factors in yield stability (Yan Tinker, 
2006). This model uses the primary and secondary effects 
from GGE biplot analysis and is useful in mega-environment 
identification (Yan et al., 2007; Yang et al., 2009).

Different crop breeders of Iran interested to using this 
procedures in their MET data and attempt to apply this tool 
in GE interaction analysis. Dehghani et al. (2006) in barley 
(Hordeum vulgare L.), Mohammadi et al. (2007) in wheat 
(Triticum aestivum L.), Sabaghnia et al. (2008a) in lentil (Lens 
culinaris Medik), Dehghani et al. (2009) in maize (Zea mays 
L.), Ebadi-Segherloo et al. (2010) in chickpea (Cicer arieti-
num L.), Mohammadi et al. (2011) in durum wheat (Triticum 
turgidum spp. durum) exploited the GGE biplot methodology 
in mega-environment investigation in Iran. According to the 
above mentioned studies, three different mega-environments 
for barley in cold regions, four winter wheat mega-environ-
ments, three possible lentil mega-environments in semi-arid 
regions, three mega-environments for late maize hybrids and 
four chickpea mega-environments were identified in Iran. 
Although, the durum wheat breeding in Iran was followed 
with MET, the uses of linear-bilinear models as well as the 
pervious statistical analysis (parametric methods) proce-
dures as an effective tool for analyzing MET and interpreting 

GE interaction have not been very much documented. This 
paper therefore tried to apply GGE biplot methodology via 
GGL biplot procedure to evaluate magnitude of GE inter-
action on durum wheat grain yield, determine the best per-
forming genotypes for selection locations, the identification 
of mega-environments and analysis of the ideal genotype and 
environment.

Materials and Methods

The trials were conducted during three years (2005 to 
2007) growing seasons in five different warm locations: 
Gachsaran, Gonbad, Ilam, Kouhdasht and Moghan. Gachsa-
ran, in southern Iran, is relatively arid, warm climatic, and 
has silt loam soil. Gonbad in the northeast of Iran are char-
acterized by semi-arid conditions and have sandy loam soil. 
Ilam in western Iran has moderate rainfall and have silt loam 
soil. Kouhdasht in the southern-east of Iran are characterized 
by semi-arid conditions and has silt-loam soil. Moghan in the 
northern-west of Iran are characterized by arid and warm 
conditions and has sandy loam soil. These mentioned loca-
tions were selected to sample climatic and edaphic conditions 
in rain-fed and warm durum wheat growing regions. They 
vary in agro-climatic factors such as latitude, rainfall, soil 
types, temperature etc. Most of these locations were classi-
fied as warm areas in Iran and have good potential for durum 
wheat production. Location geographical descriptions are 
given in Table 1.

Twenty durum wheat genotypes, including 19 advanced 
breeding lines and one local check cultivar (Seimareh), were 
used as plant material in this investigation (Table 2). The 
studied genotypes were the advanced breeding lines originat-
ed from International Centre for Agricultural Research in the 
Dry Areas (ICARDA) were determined to be high yielding 
and resistant to common durum wheat diseases. At each ex-
perimental location and each year, all genotypes were sown 
according to randomized completely block design with four 
replications. Each experimental plot was consisted of 6 rows 
(space between rows was 17.5 cm), 7 m each in length. All 
of the P fertilizer and half of the N fertilizer were applied at 
sowing, while the rest of the N fertilizer was applied at the 
stem starting growth stage. Fertilizer application was 30 kg 
nitrogen ha-1 and 70 kg P2O5 ha-1 at planting and 40 kg nitro-
gen ha-1 at stem elongation stage for all test environments. 
Plot size was 7.35 m2 and an area of 4.2 m2 (4 rows with 6 m 
long) was harvested to estimate seed per plot and then con-
verted to kg ha-1.

Statistical analysis of variance for linear-bilinear GGE bi-
plot model was performed via the program developed by Bur-
gueno et al. (2001). These analyses were performed using the 
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SAS release 6.12 (SAS, 1996). In addition, F-Gollob (Gollob 
1968) was used to test the significance of PCs for the biplot 
model. To explore G plus GE variability in grain yield of du-
rum wheat, we used the linear-bilinear GGE biplot model that 
is given by:

 
ij
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n
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where Yij is the mean of genotype i in environment j; μ is the 
grand mean; βj is the environment j main effect; n is the singu-

lar value; λin and ζin are, the singular vectors for genotypes and 
environments for lambdan = 1, 2, . . . ,k, respectively; and εij is 
the residual effect. The dataset was then subjected to graphic 
analysis using the GGEbiplot software program (Yan, 2001). 
The GGE biplots were draw using the first two symmetri-
cally scaled principal components for generating average tes-
ter coordinate and polygon view graphs (Yan Kang, 2003). 
To visualize the associations among locations, a vector view 
biplot was obtained. The results of this vector view biplot, 
were compared with Pearson’s correlation coefficient (Steel 

Table 1 
Geographical property of test locations

Location Longitude
Latitude

Altitude,
m Soil Texture Soil Type¶ Rainfall,

mm

Gachsaran 50ْ  50َ  E
30ْ  20َ  N 710 Silty Clay Loam Regosols 460.8

Gonbadd 55ْ  12َ  E
37ْ  16َ  N 45 Silty Clay Loam Regosols 367.5

Kouhdasht 23 ْ 26َ  E
48 ْ 17َ  N 1148 Silt-Loam Regosols 433.1

Ilam 46ْ  36َ  E
33ْ  47َ  N 975 Clay-Loam Regosols 502.6

Moghan 48° 03´E
39° 01́ N 1100 Sandy-Loam Cambisols 271.2

¶ Based on the FAO soil classification system (FAO, 1990).

Table 2 
The characterization of 20 durum wheat genotypes studied in multi-environmental trials

No Code Name / Pedigree Origin
1 G1 SRN-1/KILL//2*FOLTA-1 CIMMYT
2 G2 GREEN-14//YAV-10/AUK CIMMYT
3 G3 GA//2×CHEN/ALTAR84 CIMMYT
4 G4 BCR//MEMO/GOO/3/STJ7 ICARDA
5 G5 SERRATOR-1//SRN-3/AJAIA-15 CIMMYT
6 G6 D68-1-93A-1A//Ruff/Fg/3/Mtl-5/4/Lahn ICD93-0654-C-12AP-0AP-4AP-0AP ICARDA
7 G7 D68-1-93A-1A//Ruff/Fg/3/Mtl-5/4/Lahn ICD93-0654-C-12AP-0AP-6AP-0AP ICARDA
8 G8 GREEN-14//YAV-10/AUK CIMMYT
9 G9 Bisu-1//CHEN-1/TEZ/3/HUI//CIT71/Cll CIMMYT
10 G10 BCR/3/CH1//GTA/STK/4/BCR/LKS4  ICD92-0150-CABL-11AP-0AP-8AP-0TR-4AP-0AP ICARDA
11 G11 GSB1-1-4/D68/1/93A-1A//RUFF/FG/3/MTL/5  ICD95-1174-C-2AP-0AP-2AP-0AP ICARDA
12 G12 ALTAR84/STN/WDZ-2   ICD92-MABL-0238-4AP-0AP-5AP-0TR-15AP-0AP ICARDA
13 G13 DON-MD 81-36 ICARDA
14 G14 STJ3//BCR/LKS4 ICD94-0994-CABL-10AP-0AP-2AP-0AP ICARDA
15 G15 STJ3//BCR/LKS4 ICD94-0994-CABL-10AP-0AP-6AP-0AP ICARDA
16 G16 OUASERL-1  ICD96-0758-C-2AP-0AP-5AP-0AP ICARDA

17 G17 TRE97/4/GDOVZ5512/CIT/RUFF/FG/3/ENTE/MARIO//CA    
 ICD97-1044-C-0AP-6AP-AP-5AP-OAP ICARDA

18 G18 MARSYR-6   ICD95-1127-T-0AP-9AP-0AP-7AP-0TR-5AP-AP ICARDA
19 G19 ETH-LRBRI-133/3*ALTER 84 CDSP91B31-A-1H-030Y-030M-3Y-0M-1Y-0B CIMMYT
20 G20 Seimareh Iran
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Torrie 1980). To estimate the standard error of correlation 
coefficients, bootstrap analysis was performed using the 
S-Plus (Mathsoft 1999) statistical package. The biplot graphs 
were generated through GGEbiplot (Yan 2001) software, 
which as an excellent graphical tool has many applications 
other than determining stability of performance.

Results and Discussion

In the combined analysis of variance, the effects of 
genotype × location (GL) and G × Y× L were significant 
(Table 3). The main effect of year (Y) was significant (P < 
0.05), the main effect of location (L) effects was not signifi-
cant (P > 0.05) and their interaction (Y × L) was highly sig-
nificant (P < 0.01). The main effect of genotypes was signifi-
cant (P < 0.05), the genotype by year interaction (G × Y) was 
significant (P < 0.05), the genotype by location interaction 
(G × L) was not significant (P > 0.05). It is indicating that 
there is at least one durum wheat genotype with a different 
behavior in at least one of the location and environment (year 
× location combinations). Differential grain yield ranking 

across environments indicates the presence of crossover 
GE interaction. In this investigation, different genotypes 
produced the highest grain yields at different environments. 
Genotype G13 was the highest yielding genotype at two 
locations (Gachsaran and Gonbad), genotype G12 was highest 
at location Kouhdasht, genotype G10 was highest at location 
Moghan, and genotype G14 was highest at location Ilam 
(data are not shown). The GGE biplot analysis based on biplot 
model should be applied to MET data when GE interaction 
is significant, its use should not be precluded when it is not 
significant.

It is clear that 39% of G+E+GE variation is due to year, 
35% is due to location and 26% is due to GE interaction. 
Thus, the importance of years and locations are relatively 
equal. According to analysis of variance for the yearly data 
(Table 4), location was always the most important source of 
grain yield variation, accounting for 63 to 95% of the total 
variation (L + G + GL). These results gave an overall picture 
of the relative magnitudes of the G, L, and GL variance 
components. The considerable grain yield variation due to 
location term, permits using of the multivariate methods 
as one possible approach for GE interaction investigation 
and MET data analysis (Yan et al., 2000). According to Fox 
Rosielle (1982), Gauch Zobel (1996) and Yan et al. (2007) the 
unpredictable variance components such as year and location 
are irrelevant to genotype evaluation in MET data analysis. 
In addition, the multiplicative GE interaction component is 
far more complex to be summarized by one or two param-
eters in conventional stability analysis methods while multi-
variate methods can explore multi-directionality aspect and 
attempt to extract more information out of this component 
(Sabaghnia et al., 2008b). Therefore, it can be concluded that 
using of GGE biplot as the appropriate model for analyzing 
the MET data is logical.

Based on the results of Table 4, the GL interaction is larger 
than G term and so there are different mega-environments in 
durum wheat producing areas of Iran (Yan et al., 2000). Iden-

Table 3 
Combined analysis of variance of durum wheat 
performance trial yield data
Source DF MS
Year (Y) 2 206213572.0*

Location (L) 4 94220057.1ns

Y × L 8 34610128.9**

Replication/ YL 45 618760.2
Genotype (G) 19 680166.4*

G × Y 76 341113.3*

G × L 38 314535.9ns

G × Y× L 152 248317.9**

R × G / YL 855 102927.8
**, * and ns significant at the 0.01 and 0.05 probability level, 
respectively and non-significant.

Table 4 
Analysis of variance for GGE biplot model in durum wheat performance trial yield data
Source DF MS F % of GE
Location (L) 4 31406644.1 1979.7**

Genotype (G) 19 226723.8 14.2**

G × L 76 113704.6 7.1**

Model GGE biplot
PC1 22 221671.4 13.9** 35.6
PC2 20 177949.5 11.2** 27.4
PC3 18 111665.3 7.0** 15.5
Residual GGE biplot 30 164843.7 10.3** 21.5

** Significant at the 0.01 probability level
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tification of mega-environments has been an important tar-
get in MET data investigation. Gauch Zobel (1997) declared 
that growing different genotypes in different locations results 
in presence of GE interaction. Gauch Zobel (1996) defined a 
mega-environment as a portion of a plant species’ growing 
site with homogeneous conditions that causes similar yield 
performance of some genotypes. Regarding multi-direction-
ality aspect of GE interaction, relative magnitudes of the L 
to the G and GL components and mega-environment identi-
fication for durum wheat in Iran, genotype plus genotype by 
location (GGL) biplot methodology was employed to analysis 
of the preset MET dataset.

GGE biplot analyses of variance for grain yield of 20 du-
rum wheat genotypes across five locations are given in Table 
5. The fitted GGL biplot model indicated that, the first two 
PCs explained 60.3% of variation for durum wheat MET. Ac-
cording to the PCA theory, the first two principal component 
scores are the most important ones to explain the data. Con-
sidering 60.3% (PC1 = 35.6% and PC2 = 27.4%) of explana-
tion, the GE interaction SS decomposition into PC’s would 
be useful to understand and explore the relationship among 
genotypes, GE, and the mega-environment identification. In 
present investigation F-Gollob (Gollob 1968) was used to test 
significance of PCs for the GGE biplot model and showed 
that all PCs were significant but, the magnitudes of the first 
two PCs are relatively high and GGL biplots can reflect data 
variations (Table 5). The relative contributions of the first 
two PCs to the total variation for grain yield of durum wheat 
found in this investigation are similar to those found in other 
crop adaptation studies in rain-fed regions of Iran (Sabaghnia 
et al., 2008a; Ebadi-Segherloo et al., 2010). The GE interac-
tion makes it difficult to select the most stable genotypes and 
so it is an important consideration in plant breeding programs 
because it reduces the progress from selection in any one en-
vironment (Yau, 1995).

The graphic presentation through the first two PCs indi-
cated that this biplot explained 60.3% (PC1 = 35.6% and PC2 
= 24.7%) of the GGL, implying that the GL for grain yield in 

this dataset was complex. A biplot of PC3 versus PC4 can-
not reveal any discernible patterns due to low explanation 
of G+GL variation (lower than 22%). According to Yan and 
Tinker (2005) GGE biplot of PC1 vs. PC2 adequately dis-
play the GGE patterns instead of GGE biplot of PC3 vs. PC4. 
Polygon view of biplot has been used to identify “which-wins-
where” patterns in MET data analysis. In this graph, lines 
are drawn to connect the furthest genotypes in the biplot and 
then a line is drawn perpendicular to that side of the polygon 
to pass through the origin. The furthest genotype is the best 
performer in the location included in that sector. There are 6 
rays in Figure 1 which divide the biplot into 6 sectors, and the 
locations fall into 3 of them. An interesting property of the 
GGL biplot polygon view is that each vertex genotype has 
higher yield than the other genotypes in all locations that fall 
in the related sector (Yan, 2002). Thus, 2 locations (Gonbad 
and Moghan) fell into sector 1 and the vertex genotype for 
this sector was G10, suggesting that high yielding genotype 
for these 2 locations was G10. This genotype was better than 
the other genotypes, which fell into sector 1 (genotypes G4, 
G6, G16 and G20). 

Similar to the above conclusion, 2 locations, Kouhdasht 
and Ilam, fell into sector 5, and the vertex genotype for this 
sector was G12, suggesting that the higher-yielding genotype 
for these 2 locations was G12. This genotype was better than 
the genotypes G15 and G19, which fell into sector 5. A single 
environment, Gachsaran, fell into sector 6 and the vertex gen-
otype for this sector was G14. Genotype G14 was better than 
the other genotypes, which fell into sector 6 (genotypes G9, 
G8 and G13). It could be mentioned that the locations are not 
represented by genotypes. Furthermore, the observed pattern 
of Figure 1 indicated that relationship among locations, which 
is the way to define possible mega-environments. Polygon 
view of biplot has been used to identify polygon view of biplot 
(Figure 1) suggests that there exist 3 possible durum wheat 
mega-environments in the Iran: (i) Gonbad and Moghan in 
northern Iran represented by genotype G10, (ii) Kouhdasht in 
southwestern and Ilam in western Iran represented by geno-

Table 5 
Genotype (G), location (L), and genotype × location (GL) variance terms for durum wheat multi-environmental 
trials, 2005 to 2007

Source of variation DF Year 2005 Year 2006 Year 2007
MS %GL MS %GL MS %GL

Location (L) 4 16971440.2** 0.63 478845985.5** 0.95 26757379.1** 0.82
Rep. within L 15 379291.2 712689 764300.3
Genotype (G) 19 678821.8* 0.12 297942.3ns 0.01 332474.3ns 0.05
G × L 76 347439.2** 0.25 257396.3** 0.04 232913.6** 0.14
Error 285 119681.3 107006.9 82095.3
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type G12, and (iii) Gachsaran in southern Iran represented by 
genotype G14. It is clear that identification of mega-environ-
ments through “which wins where” methodology based on 
polygon view of GGL biplot is in agreement with geographical 
properties of test locations in durum wheat in Iran.

In GGE biplot methodology, the yield and stability of the 
genotypes were examined by an average tester coordinate 
(ATC). The mean yield of the genotypes is estimated by their 
projections on the ATC x axis. The average location, as the 
virtual location, is showed by a circle and indicates the positive 
end of the ATC x axis (Figure 2). According to the ATC figure, 
the length of the average location vector was adequate to 
select genotypes based on mean yield. Genotypes with above 
average were selected means (G7, G8, G9, G13, G14 and G16), 
whereas the remained genotypes were discarded (Figure 2). 
In contrast, G10 was the least stable genotype which has 
variable performance across test locations, while was as the 
one of the high yielding genotypes. The performance of all 
genotypes like G5 and G18 close to ATC axe was stable ones, 
whereas some of them showed low mean yields (Figure 2). 
Therefore, it seems that genotypes G7, G8, G9, G13, G14 
and G16 are good candidates for recommending as the most 
favorable genotypes from both mean yield and stability 
aspects. Considering G and L performance in Figure 2, geno-
types adapted specifically to Moghan and Gonbad were G4, 
G9, G10, G16 and G20; and those adapted specifically to Ilam 
and Kouhdasht were G8, G14, G15 and G19.

Simultaneous selection for both mean yield and stabil-
ity of genotypes performance is an important consider-
ation in breeding programs (Yan and Kang, 2003). Kang 
and Pham (1991) have studied several stability methods for 
simultaneous selection for yield and stability and reported 
that a greater emphasis on stable performance would not 
necessarily be harmful to farmers because they would ex-
pect high mean yield from the cultivated genotypes on 
their farms. According to Crossa et al. (2002) using of GGE 
biplots in the identification of superior genotypes, facilitates 
the identification of such genotypes. Our study has clearly 
indicates that the GGE biplot model can analyze patterns and 
relationships of genotypes and locations successfully as well 
as provide a valuable prediction. Finally, ATC view of GGE 
biplot methodology can be regarded as a suitable tool for si-
multaneous selection of both mean yield and stability in MET 
data analysis.

The correlation coefficients among the five test locations 
are presented in Table 6. The vector view of a GGL biplot 
provides a summary of the interrelationships among the loca-
tions (Yan, 2002). If the biplot explained an adequate amount 
(≥50%) of the total variation, the correlation coefficient be-
tween any two locations is reliable. The biplot in Figure 3 
explained 60.3 % of the total variation and so this biplot can 
be used for extracting interrelationships among the locations. 
The correlation coefficient between any two locations is esti-
mated by the cosine of the angle between their vectors. Two 

Fig. 1. GGE biplot identification of winning genotypes 
and their mega-environments. Twenty durum wheat 

genotypes grown in five locations

Fig. 2. GGE biplot of mean and stability of 20 durum 
wheat genotypes for yield and specific genotype × 

environment interactions
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locations are positively correlated if the angle between their 
vectors is <90°, negatively correlated if the angle is >90°, 
independent if the angle is 90°. In addition, locations with 
longer vectors are more responsive to the genotypes; locations 
with shorter vectors are less responsive to the genotypes; and 
those located at the biplot origin are not responsive at all (Yan 
and Kang, 2003).

The most prominent relations based on Figure 3 were: 
(i) positive associations between Moghan and Gonbad and 
between Ilam and Kouhdasht locations and (ii) a low positive 
or near-zero correlations between Gachsaran with the other 
locations. Pearson’s correlation coefficients and output of the 
bootstrap resampling technique (mean, bias and standard er-
ror) are given in Table 6. The low standard error of all the 
correlation coefficients and the low bias also indicated the ro-
bustness of correlation analysis. Although some of the above 
predictions can be verified from the Pearson’s correlation co-
efficients and bootstrap analysis (Table 4) but some others 
are not consistent with the original coefficients of correlation. 
Such discrepancies are seen because the GGL biplot method 
explained only 60.3% rather than 100% of the total variation. 
Although, all above conclusions have some error but GGL 
biplot shows predictions on the general pattern of the whole 
dataset, the predictions are probably more reliable than the 
individual observations (Yan and Hunt 2002).

The biplot vector view can be used to identify test envi-
ronments which have large angles or low or negative correla-
tions. Locations with small angles between them were highly 
positively correlated, and they provided similar informa-
tion on genotypes. In the MET data of durum wheat in all 3 
years, two locations Ilam and Kouhdasht besides two loca-
tions Moghan and Gonbad were closely correlated (Figure 3), 

suggesting that these locations provide redundant informa-
tion about genotypes. Obtaining similar information by us-
ing fewer test environments should reduce the cost of testing 
and increase breeding efficiency. Therefore, we can suggest 
that one of the two locations in each set be dropped to reduce 
the cost of testing. In addition, in the vector view of the bi-
plot, the length of the location vectors estimates the standard 
deviation within each location, which is a measure of their 
discriminating ability. Thus, all five-test locations were most 
discriminating locations for durum wheat yield performance 
(Figure 3).

Table 6
Pearson’s correlation coefficients and Bootstrap resampling technique statistics (Bias, Mean and standards error) 
among five test locations environments

Location 1 Location 2 Observed Bootstrap statistics
Bias Mean SE

Gachsaran

Gonbad 0.189 0.0131 0.202 0.2049
Kouhdasht 0.265 0.0073 0.273 0.1542
Moghan 0.278 0.0143 0.292 0.2159

Ilam 0.402 0.0101 0.412 0.1679

Gonbad
Kouhdasht 0.064 -0.0568 0.007 0.4209

Moghan 0.385 -0.0426 0.342 0.2378
Ilam 0.059 0.0054 0.064 0.1714

Kouhdasht Moghan -0.028 0.0274 -0.001 0.2958
Ilam 0.180 0.0030 0.183 0.1722

Moghan Ilam 0.057 -0.0096 0.047 0.2349
* Critical values of correlation P<0.05 and P<0.01 (D.F. 18) are 0.44 and 0.56, respectively.

Fig. 3. GGE biplot for relationships between test locations
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Another interesting application of GGEbiplot software is 
to evaluateof genotype relative to an ideal genotype. The ideal 
genotype as virtual genotypes is one that has both high mean 
yield and high stability (Yan Rajcan 2002). This genotype 
has large PC1 scores (high mean yield) and small (absolute) 
PC2 scores (high stability). A genotype is more favorable if it 
is closer to the ideal genotype position. Therefore, genotypes 
G13 and G14 following to G8, G9 and G15 were more desir-
able than other durum wheat genotypes (Figure 4). It seems 
that Ideal genotype procedure of GGE biplot methodology is 
a proper tool for identifying high yielding genotypes as the 
most stable ones. This method can be regarded as the same 
as AMMI parameters which try to facilitate identifying more 
stable genotypes using AMMI procedure (Sabaghnia et al., 
2008a). In other word, Ideal genotype procedure attempts to 
define the GE interactions by one parameter (distance from 
Ideal genotype) and summarize complex aspect of GE inter-
action using only one parameter.

According to Yan (2001), discriminating ability and rep-
resentative-ness are the important properties of a test loca-
tion. An ideal location should be highly differentiating of 
the tested genotypes and at the same time representative of 
the target location (Yan and Kang, 2003). Similar to ideal 
genotype, an ideal environment or location is defined and 
showed by the small circle with an arrow pointing to it. Ac-
cording to Figure 5, location Gachsaran is more desirable 
test location than the other test locations. Thus, genotype 

evaluation in Gachsaran maximizes the observed genotypic 
variation among genotypes for grain yield of durum wheat. 
The discriminating ability of a location is comprised of 
genotypes, but the presence of GE interaction complicates 
the identification of an ideal test location (Yan et al., 2000). 
Usually non-additive or crossover GE interaction was 
observed in the most MET and it is essential to reveal the na-
ture of GE interaction. GGE methodology is suitable tool to 
analyze this kind of interactions partitioning them into their 
PCs. The  test location should has large PC1 scores in order 
to discriminate genotypes in terms of the genotypic main ef-
fect and absolute small PC2 scores in order to more represen-
tative of the overall locations (Yan Rajcan, 2002). 

There is no doubt that multivariate methods for MET data 
analysis are useful tools for plant breeders. In addition, visual-
ization techniques such as biplot are useful to quickly explore 
patterns of genotypes or locations, and can be extract useful 
information from complex MET dataset. Recently there has 
been an ongoing debate on advantages and disadvantages of 
biplots in AMMI versus GGE models for MET data analy-
sis and GE interaction studies (Gauch, 2006; Yan et al., 2007; 
Gauch et al., 2008; Yang et al., 2009). An important disad-
vantage of the GGE biplot methodology is lack of measure of 
uncertainty. Yan Hunt (2002) proposes that the significance of 
the difference between two genotypes can be visually assessed 
from their plot distance relative to the plot size. Simultaneous 
selection for both mean yield and stability of genotypes per-

Fig. 4. GGE biplot of ideal genotype and comparison 
of the genotypes with the ideal genotype for the twenty 
durum wheat genotypes which grown in five locations

Fig. 5. GGE biplot of ideal environment and comparison 
of the locations with the ideal environment. Twenty 

durum wheat genotypes grown in five locations
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formance is an important consideration in breeding programs 
(Yan Kang, 2003). At first time, Kang (1988) proposed a non-
parametric stability statistic as named as rank-sum using sta-
bility variance of Shukla (1972) and genotype mean rank for 
simultaneous selection for mean yield and stability. A greater 
emphasis on stable performance (static concept) would not 
necessarily be harmful to farmers because they would expect 
high mean yield from the cultivated genotypes on their farms. 
Therefore, it seems that GGE model for MET data analysis is 
a suitable tool for achieve high mean yield genotypes which 
have acceptable stability (dynamic concept of stability). An 
inconsistent genotype performance across environments can 
provide additional information for the breeder and can help 
predict the variability expected among different regions (Bus-
ey, 1983). GGE biplot methodology thus provides a lot of flex-
ibility in the hands of plant breeders for simultaneous selec-
tion for yield and stability.

The magnitude of GE interaction for grain yield of 20 
durum wheat genotypes tested across 15 rain-fed environ-
ments sampled from the arid and semi-arid regions of Iran 
was larger than that of G effect, but smaller than that of E 
effect. The genotypes studied indicated additive and cross-
over of GE interaction and this phenomenon led to differen-
tial rankings of genotypes across test environments (location 
by year combinations), thereby making genotypic selection 
difficult for the rain-fed conditions of Iran. In general and 
according to all GGL biplot figures of the present investiga-
tion genotypes G14 was the most favorable genotype from 
both mean yield and stability properties. Also following to 
this genotype, two other genotypes (G8 and G13) could be 
considered. Of course, from mega-environment aspect and 
specific adaptation problems, G14 was the most favorable 
genotype for location Gachsaran and the most favorable 
genotypes of mega-environment Kouhdasht and Ilam was 
G12 and the most favorable genotypes of mega-environment 
Gonbad and Moghan was G10.

Conclusion

In present investigation, GGE biplot methodology, as has 
been shown to be very useful for analysing MET dataset of 
durum wheat (Mohammadi et al., 2010; Mohammadi et al., 
2011), permitted a meaningful grasp of GE interaction and 
exploring the relationships among genotypes and test envi-
ronments. Cooper et al. (1997) suggest that yield under low-
stress conditions was an effective predictor of yield under 
similar low-stress target environments. Grain yield in the abi-
otic stress conditions was a poor predictor of yield in the tar-
get environments. Our findings are in agreement with those 
reported by Cooper et al. (1997), given that favorable location 

(Gachsaran) was more representative of the overall locations 
and more powerful to discriminate genotypes than the unfa-
vorable ones. Cooper et al. (1997) also proposed that grain 
yield breeding can best be done by selection for a combina-
tion of yield potential in favorable environments and yield in 
on-farm trials that sample the range of water-limited environ-
ments of the target population of environments. Our results 
indicate that the GGE biplot model is an excellent tool for 
visual MET data analysis. It has some advantages: graphical 
presentation, be interpretative and facility of mega-environ-
ments identification.
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