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Abstract

Karlovic, S., T. Bosiljkov, M. Brncic, D. Jezek, B. Tripalo, F. Dujmic, I. Dzineva and A. 
Skupnjak, 2013. Comparison of artificial neural network and mathematical models for drying of apple slices 
pre-treated with high intensity ultrasound. Bulg. J. Agric. Sci., 19: 1372-1377

In this paper, an artificial neural network model was compared to the traditional regression models for drying food materi-
als. High intensity ultrasound with amplitudes set to 25%, 50%, 75% and 100% of maximal was used for the treatment of apple 
slices of different thicknesses. After 7 min of treatment, samples were dried in the infrared drier at two different temperatures. 
The four most frequently used regression models for drying available in the literature were fitted based on experimental data, 
and their usability was tested on different experimental sets. For the creation of back-propagation neural network, 3 input pa-
rameters were used (amplitude of ultrasound, sample thickness and drying temperature) together with one output (moisture 
content). After training and the validation of networks, statistical analysis was conducted, based on the mean square error and 
correlation coefficient, the best network was selected. After the assessment of networks and statistical results, neural networks 
showed excellent fitting to experimental data, independently of the input parameters obtained in experiments. This is opposed 
to standard regression models, which had excellent fit to just one set of experimental data, and show inadequate fit even with 
small-introduced changes in one or more input parameter.
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Introduction 

Drying of food materials on a large scale depends on the 
proper control of drying operation, drying time, temperature, 
air velocity and other parameters, such as water content and 
mass of material (Ježek et al., 2006; Ježek et al., 2008). The 
performance and characteristics of convective dryers are usu-
ally determined following a series of experiments on various 
temperatures and air velocities (Movagharnejad et al., 2007). 
Mathematical models based on such experimental data com-
bine the effects of all parameters, and different combinations 
and coefficients (Togrul, 2005). The performance and char-
acteristics of convective dryers are usually determined by 
performing a series of experiments on various temperatures 
and air velocities (Movagharnejad, 2007). The design of dry-
ing operations needs accurate models for drying which are 
simple and fast to use, so that optimal parameters can be cal-

culated, instead of those based on a series of time-consuming 
experiments (Evin, 2011; Mrkic et al., 2002).

Rapid drying to low moisture is critical, and the search for 
further improvements to conventional drying processes have 
resulted in experiments with high intensity ultrasound before 
or during the drying phase (Brnčić et al., 2010; Bankole et 
al., 2005). Combining the drying process and high-intensity 
ultrasound pre-treatment leads to even more complex, expen-
sive and time- and money-consuming experiments, which 
benefit from the implementation of quality mathematical 
models? The drying process, which includes ultrasonic treat-
ment with intensities over 10 W/cm2 is suitable for chang-
ing the physical and chemical properties of fruit, and as such 
should be carefully modelled to minimise the loss of food 
quality and process costs (Dujmić et al., 2012; Bosiljkov et 
al., 2011). Testing and setting up a system based on previous 
experimental data using regression models is standard prac-
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tice in laboratory and industry settings, but it has some seri-
ous limitations in the complex drying setup, primarily with 
regard to the number of variables used (usually two: moisture 
content and drying time) (Menlik et al., 2010). Current em-
pirical mathematical models of correlation between drying 
time as an input parameter and water content as an output pa-
rameter have excellent predictions for the single, specific ex-
periment. Some of the most commonly used drying models 
are presented in Table 1, and are discussed in the experimen-
tal section of this paper. The introduction of any modification 
to the drying parameters leads to an inability of the previous-
ly established empirical model to fit new experimental data; 
as a result, there is no such model to satisfy the whole range 
of drying conditions. Based on only one input parameter, ex-
isting models are not adequate for industrial control of air-
drying processes (Hernandez-Perez et al., 2004). 

Artificial neural networks (ANN) can overcome this limi-
tation, and when correctly used can incorporate data from the 
all input variables, giving values for one or (rarely) more out-
put variables (Afaghi et al., 2001). Neural networks, as mas-
sive parallel-distributed information processing systems, are 
modelled based on biological neural networks, taken from 
research on artificial intelligence. Such models have the abil-
ity to set weights to each unit or each neuron in the network 
(Chaylan et al., 2010). Those properties of heuristic models 
do not require parameters of physical models and can learn 
just from experimental data, even when handling complex 
systems with nonlinear interactions between multiple deci-
sion variables (Lertworasirikul and Tipsuwan, 2008). This 
enables multiple variable inputs with different levels of sig-
nificance, which, after training, give values for the relevant 
output variable. The most popular networks for the process 
modelling of food drying are multi-layer perceptrons. Those 
networks consist of identical neurons organised in layers, 
with connections between every unit in adjacent layers (Hus-
sain et al., 2002). In a typical back propagation feed-forward 
network, inputs are fed to the input layer consisting of the 
same number of neurons. Output values from the input layer 
propagate through neurons in the hidden layer, based on the 
weight of each neuron and using non-linear sigmoid, hyper-
bolic tangent or just simple linear transfer functions (Her-

nandez-Perez et al., 2004). Finally, after going through one 
or more hidden layers, data are fed to the output layer and the 
result is transformed and forwarded to output variables. This 
structural method of propagation was accepted as the most 
stable, and is preferred over other types of networks. The next 
step after the forward pass is the backward pass, in which 
errors from the output layer are sent back to the input layer; 
during this step, weights and interconnections were adjusted 
with the goal of minimising the error and identifying the best 
fit to experimental data (Erenturk and Erenturk, 2007). Af-
ter the training phase of network, validation with fresh set 
of data and testing of network performance is performed, to 
ensure minimal error and prevent over-fitting. 

In this paper, empirical models for drying of food mate-
rials will be fitted to the experimental data gathered using 
ultrasonic pre-treatment and drying of apple slices. Models 
will be compared to the modelled artificial neural network 
and the best one will be chosen based on statistical analysis.

Materials and Methods

Fresh Golden delicious apples (Fragaro, Croatia) were 
peeled and cut into slices of 5×5 cm with thicknesses of 0.25 
and 0.5 cm. Approximately 50±1 g of apple slices were im-
mersed in 200 mL of distilled water, in a 250 mL glass. The 
starting temperature of distilled water was 22°C and the hu-
midity was constant during all experiments. An ultrasonic 
probe with a 40 mm radius was immersed 1 cm below the 
water surface. Ultrasonic equipment (UP-200S, dr. Hiel-
scher, Germany) with variable amplitude and pulse settings 
had a theoretical maximal output power of 200 W, with a 
fixed frequency of 24 kHz. Amplitudes were set at 25, 50, 
75 and 100% of the maximum. The maximal cycle was used 
during all experiments. Processing of liquid with immersed 
samples using high-intensity ultrasound was performed for 7 
minutes. The reference sample was immersed in water for 7 
minutes, without ultrasonic treatment. After processing, ap-
ple slices were put in an infrared dryer and moisture analyser 
(Mettler LJ-16, Switzerland), with drying temperatures set to 
55°C and 65°C. During the experimental run in an infrared 
dryer, the mass of the samples was recorded every minute, 
until no significant difference between ten subsequent read-
ings was observed.

Statistical analysis was conducted and mathematical mod-
els, together with models of the neural network, were pro-
duced in Statistica 9 (Statsoft, USA) software. For each run, 
absolute moisture (X/X0) was calculated based on equation 
1 and calculation of the parameters for selected models for 
describing the drying behaviour of food materials was con-
ducted based on the experimental data. 

Table 1 
Experimental models for drying of food material

Model name Model equation
Page MR = exp(-ktn)
Henderson - Pabis MR = a · exp(-kt)
Logarithmic MR = a · exp(-kt) + c
Approximation of diffusion MR = a · exp(-kt) + (1-a) · exp(-kbt)
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X  = MR =  M - Me    ,				    (1)X0               M0 - Me  	

where Me is equilibrium moisture content and M0 is the start-
ing moisture content.

Using nonlinear estimation with user-specified regression 
and least squares minimisation, Page, logarithmic, Hender-
son and Pabis, as well as an approximation of diffusion equa-
tions were fitted to the experimental data. Based on mean 
square error and correlation coefficient, the best model is se-
lected and compared to the neural network model.

A multi-layer perceptron was selected as the relevant net-
work type for training with experimental data. Selected input 
variables were amplitude of ultrasound, thickness of slices 
and drying temperature, with water content as the output 
variable, as presented in Figure 1. 

In order to estimate the dynamic drying behaviour, values 
for input variables were randomly collected from the experi-
mental dataset and divided into three partitions. The first set 
(70% of data) was used as training data for neural networks 
and the second set (20% of data) was used for validation of 
networks and evaluation of network quality during the train-
ing phase. The third set (10% of data) was used as new data 
for testing network performance, and consequently, this par-
tition is never used in training. One hidden layer was selected 
as adequate and the starting number of neurons was set as 
half of the sum of the input and output neurons (Farkas et al., 
2000). An increase of neurons in the network is conducted 
until the fitting error reaches a satisfactory level, which pre-
vents over-learning of the network and inadequate fit to vali-
dation data. 

To account for the effect of other drying variables besides 
amplitude of ultrasound and to compare models with neural 

network, constants in drying models were regressed against 
slice thickness and drying temperature using multiple regres-
sion analysis. Combinations with the highest R-value were 
included in the final model, ensuring the best possible fit to 
all of the gathered experimental data.

Results and Discussion

Based on the experimentally gathered data, the amplitude 
of ultrasound has a significant influence on drying time, in-
dependently of drying temperature and slice thickness, as 
presented in Figure 2. Imploding cavitation bubbles and the 
subsequent release of high temperatures and pressures affect-
ed the fruit tissue, changing the structure of the immersed 
samples. An increase of amplitude leads to an increase in 
cavitation intensity, which opens pores in the apple samples, 
and creates new ones. A larger number of pores and the en-
largement of existing pores slowed down the sealing of pores 
during drying, which ensured the faster diffusion of water 
to the surface of the sample and prolonged the first phase of 
drying with an almost linear drop in water content. With the 
increase of amplitude, drying time shortens from 140 min 
for untreated samples to a minimum of 87 min for samples 
treated with 100% of maximal amplitude. It is evident that 
ultrasonic pre-treatment further complicates fitting of empir-
ical mathematical models to experimentally obtained data. 
Shorter drying times achieved with ultrasonic treatment and 
different drying curves indicated that models based solely on 
drying time proved to be unsuitable for use in the prediction 
and control of the drying process. In Figures 5, 6, 7 and 8, 
differences between drying curves are evident, as well as the 
near perfect fit of the empirical model to just one set of the 
experimental data. 

The best empirical correlation for describing the drying 
behaviour of apple slices is found to be an approximation of 
diffusion, with R2 = 0.99132 obtained for one specific experi-
ment (Figure 8). In comparison, the best artificial neural net-
work was selected based on the errors in training and testing 
performances. 

MLP with 12 neurons using BFGS 78 algorithm, the lo-
gistic transformation function in the hidden layer and the hy-
perbolic tangent activation function in the output layer had 
a training error of 0.999375 and an error during the testing 
phase of 0.999231. A larger number of neurons results in a 
better fit to training data, but cannot satisfactorily pass the 
testing phase. Figures 3 and 4 show excellent fit of the ANN 
model, with predicted and output values fitted independently 
of the used drying temperature, amplitude or slice thickness. 
Results show that plots between predicted and experimen-
tal water contents in samples were almost a straight line for 

Fig. 1. Model of an artificial neural network based on 4 
inputs, a hidden layer with an as yet unknown number of 
neurons and an output layer, used for fitting of experimental 

data (based on Erenturk and Erenturk, 2007)
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training and validating processes, with minimal MSE. Excel-
lent prediction of the trained artificial neural network is in 
accordance with results presented by Hernández-Pérez et al. 
(2004), Movagharnejad and Nikzad (2007), and Satish and 
Setty (2005). After the ANN setup, minimal time (in range 
of few ms) was needed for acquiring of output data based on 
experimental input values. On-line use of an artificial neural 
network is thus feasible, which was also reported by Hernán-
dez (2009). This also allows the determination of drying time 

of the samples under the dynamic drying system assisted by 
ultrasonic pre-treatment.

The correlation coefficients of tested empirical models 
presented in Table 2 show significantly lower values, indicat-
ing that the obtained artificial neural network demonstrates a 
considerably better fit to the experimental data. The predic-
tion capability of trained ANN is the best of the all of the in-
vestigated models independent of the parameters used, which 
was also reported by Tripathy and Kumar (2008). For the 
whole range of experiments, maximal error was obtained us-
ing the Henderson and Pabis model, with a mean percent er-

Fig. 2. Dependence of water content in apple samples on 
drying time and the amplitude of ultrasound based on 

values gained with an artificial neural network

Fig. 3. Predicted and experimental data for changes  
in water content during drying

Fig. 4. The ANN predicted and experimental data for 
water content in apple slices

Fig. 5. Henderson and Pabis model fitted to one set of 
data (25% of amplitude) and compared to 4 other sets 

of experimental data (without US treatment, 50%, 75% 
and 100% of maximal amplitude) at 65°C
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ror (MPE) of 19.84%. The approximation of diffusion model 
had the smallest MPE of 13.27%. Those errors are substan-
tially higher than MPE of neural networks, which amounted 
to just 0.73% because of including the three most significant 
input variables used in training, instead of just one. 

Conclusion

An artificial neural network model with a significantly 
smaller mean square error compared to empirical models 
should be the preferred method for accurate describing of 
drying behaviour. Using the ANN, the application of ultra-
sound in drying operations can be successfully modelled, as 
this kind of heuristic network is not strictly limited to specific 
experiments and allows for a broad range of values for larger 
numbers of input parameters. All four of the tested empirical 
models had satisfactory coefficients of correlation above 0.90, 
but only for one set of data. Compared with ANN and R2 = 
0.999231, empirical models had up to 19.11% higher MSE and 

Fig. 8. Approximation of diffusion model fitted to one set 
of data (25% of amplitude) and compared to 4 other sets 
of experimental data (without US treatment, 50%, 75% 

and 100% of maximal amplitude) at 65°C

Table 2 
Correlation coefficients and mean square errors selected based on multiple regression analysis for experimental 
models, and compared to the artificial neural network model
Model Parameters R2 MSE
Henderson and Pabis a=1.01408; k=0.011996 0.952625 5.24·10-3

Page k=0.01018; n=1.03412 0.979570 2.89·10-4

Logarithmic a=1.00057; k=0.012354; c=0.015823 0.989833 2.31·10-4

Approximation of diffusion a=-0.02168; k=0.256448; b=0.047254 0.991032 9.85·10-5

Artificial neural network   0.999375 1.18·10-5

Fig. 7. Page model fitted to one set of data  
(25% of amplitude) and compared to 4 other sets of 

experimental data (without US treatment, 50%, 75% 
and 100% of maximal amplitude) at 65°C

Fig. 6. Logarithmic experimental model fitted to one set 
of data (25% of amplitude) and compared to 4 other sets 
of experimental data (without US treatment, 50%, 75% 

and 100% of maximal amplitude) at 65°C
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could not be considered as good models for the control and 
prediction of drying using ultrasonic treatment and a wide 
range of input parameters.
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