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Abstract

VELICHKOVA, K. AND I. SIRAKOV, 2018. Growth parameters, protein and photosynthetic pigment content of 
Chlorella vulgaris cultivated under photoautotrophic and mixotrophic conditions. Bulg. J. Agric. Sci., 24 (Suppl. 
1): 150–155

The purpose of this study was the determination of growth parameters, chlorophyll, carotenoid and protein content of 
the green microalgae Chlorella vulgaris cultivated under different mixotrophic and photoautotrophic conditions. Microalgae 
cultivation was initiated in a laboratory bioreactor of 500ml Erlenmeyer flask containing 250 ml nutrition media BBM. The 
cultures were maintained at room temperature (25-27ºC) on a fluorescent light with a light:dark photoperiod of 12 h:12 h. The 
strains were checked for 96 hours growth period in photoautotrophic variants with carbon dioxide (2%, v/v), mixotrophic – 
CO2 + 3g.l-1 glucose, mixotrophic – CO2 + 3g.l-1 lactose. In the present study we found that C. vulgaris showed better growth 
in mixotrophic conditions with CO2 and glucose. Higher content of chlorophylls, carotenoid and protein was obtained in the 
photoautotrophic culture.
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Introduction

The microalgae cultivation stemmed from their use for 
the provision of vitamins, coloring materials including caro-
tene, chlorophyll, various pharmaceutical substances, ener-
gy products (biofuel, methane, bioethanol, biohydrogen), as 
animal feed and as a food in the human diet (Ogbonna et al., 
1997; Agwa et al., 2012). Algae cultivation requires light, car-
bon source, growth medium and nutrients. Some algae spe-
cies can use organic sources from municipal and industrial 
wastewaters as carbon source through heterotrophic metabo-
lism (Blair et al., 2013; Sirakov and Velichkova, 2014). Mi-
croalga can grow heterotrophically with an organic carbon 
source instead of using a continuous flow of carbon dioxide 
and light in the same nutrition media as in phototrophic cul-
tures (Morales-Sanchez et al., 2013). The advantages of the 
phototrophic cultivation is that microalgae fixes carbon di-
oxide and produces oxygen, contributing to the reduction of 
carbon emissions to the atmosphere (Gouveia and Oliveira, 
2009). Mixotrophic cultivation uses simultaneously inorgan-

ic and organic compounds as carbon source (Dragone et al., 
2010). Carbon sources (like lactose, glucose, galactose) from 
industrial dairy waste may use for algae cultivation (Abreu 
et al., 2012). Cultivation of microalgae with nutrients from 
wastewater, such as nitrogen and phosphate, can decrease the 
cost of the raw materials and also provide some environmen-
tal benefits (Sirakov et al., 2013; Velichkova, 2014). Also if 
the algae have the capability to grow on heterotrophic mode, 
organic carbon sources can stimulate the cell growth rate and 
increase the lipid content of the biomass (Heredia-Arroyo et 
al., 2011). Mixotrophic cultivation in comparison with photo-
autotrophic cultures has been associated with lower energy 
costs due to its relatively lower requirements for light inten-
sities (Garcia et al., 2005). Mixotrophic organisms have the 
possibility of living under both conditions autotrophic and 
heterotrophic based on the available light intensity and or-
ganic compound concentration (Mata et al., 2010). Also for 
mixotrophic culture conditions the organic sources might 
be less costly considering the high carbon cost (Liang et al., 
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2009). Mixotrophic cultivation of microalgae provides higher 
biomass and lipid productivities than cultivation under photo-
autotrophic conditions (Bhatnagar et al., 2011). 

C. vulgaris is a photosynthetic microalgae with a fast 
growth rate used for food and biofuel due to its high pro-
tein and lipid contents (Phukan et al., 2011; Seyfabadi et al., 
2011). Chlorella showed great potentials as future bioenergy 
producers due to their endurance, high growth rate, and high 
oil content, and it can be cultured both under autotrophic and 
heterotrophic conditions (Miao and Wu, 2004, 2006; Liang 
et al., 2009). The researches show that C. vulgaris grown on 
exogenous sugars like glucose medium may provide a higher 
microalgal biomass (Dvorakova-Hladka, 1966; Liang et al., 
2009; Abreu et al., 2012).

The purpose of this study was cultivation of the green mi-
croalgae Chlorella vulgaris under different mixotrophic and 
photoautotrophic conditions and determination of growth pa-
rameters, chlorophyll, carotenoid and protein content.

Materials and Methods

Chlorella vulgaris (SKU: 100-CVC00-50) was delivered 
from Algae depot – USA (www.algaedepot.com). The strain 
was cultivated in BBM medium which chemical composi-
tions is NaNO3 – 10.0 g, MgSO4. 7H2O – 3.0 g, NaCl – 1.0 
g, K2HPO4 – 3.0 g, KH2 PO4.3H2O – 7.0 g, CaCl2.2H2O – 1.0 
g (stocks per 400 ml); ZnSO4.7H2O – 8.82 g, MnCl2.4H2O – 
1.44 g, MoO3 – 0.71 g, CuSO4.5H2O – 1.57 g, Co(NO3)2.6H2O 
– 0.49 g (trace elements solution per litre); EDTANa2 – 5.0 g, 
FeSO4.7H2O – 4.98 g.

Algae cultivation was initiated in bioreactor from 500ml 
Erlenmeyer flask containing 250 ml of BBM nutrition media. 
The experiment was conducted in photoautotrophic variants 
with carbon dioxide (2%, v/v), mixotrophic – CO2 + 3g.l-1 glu-
cose, mixotrophic – CO2 + 3g.l-1 lactose. Three luminescent 
lamps Sylvania Aqua Star – 18w, 10 000 K were placed at a 
distance of 30 mm from flasks. Light regime was adjusted at 
12:12 h light:dark cycle in an illumination incubator until the 
end of experiment. The temperature was kept between 25 and 
27oC. The strains were checked for 96 hours growth period.

Growth measurements
Optical densities of microalgae cultures were measured at 

0, 24, 48, 72 and 96 hours after the start of the experiment in 
three replicates. The sample with volume one ml was appro-
priately diluted with deionized water and the average value 
was recorded by absorbance at 680 nm with the help of spec-
trophotometer DR 2800 (Hach Lange).

The cultures were determined gravimetrically and growth 
was expressed in terms of dry weight (mg/l) (Rao et al., 2007). 

The cultures were harvested by centrifugation at 3.000 x g 
for 10 min and the cells were washed with distilled water. 
The pellet was freeze dried. The dry weight of algal biomass 
was determined gravimetrically and growth was expressed 
in terms of dry weight (mg.l-1).

Chlorophyll and carotenoid content
The isolation of pigments from algae cells included the 

following procedures: harvesting 2 ml of microalgae cells by 
centrifugation at 10000 rpm, two times for 3 min and dis-
carding the supernatant, suspension of cells in 2 ml metha-
nol/water 90:10 v/v and mixing of Vortex for 1 min., heating 
of the suspension for half an hour in a water bath at 60ºC, 
cooling of the samples at room temperature, centrifugation of 
suspension (10000 rpm for 3 min) and discarding the super-
natant with dissolved pigments. The absorbance of the pig-
ments extract (665, 652 nm for chlorophyll content (a+b) and 
470, 666nm for carotenoids content) was recorded by using 
spectrophotometer DR 2800 (Hach Lange). The chlorophyll 
content was computed (mg.l-1) according Porra et al. (1989) 
and carotenoid content was computed (mg. l-1) according 
Lichtenthaler (1987).

Protein content
Crude protein content was calculated by converting the 

nitrogen content, identifi ed by Kjeldahl’s method, using an 
automatic Kjeldahl system (Kjeltec 8400, FOSS, Sweden). 

Data analyses were conducted by using Analysis of Vari-
ance ANOVA (MS Office, 2010).

Results and Discussion

C. vulgaris cultivated under mixotrophic conditions syn-
thesize compounds characteristic of both photosynthetic and 
heterotrophic metabolism. Microalgae growth was character-
ized with optical density and dry weight under different culti-
vation conditions (Figure 1, 2).

The best optical density was measured in the cultivation 
of Chlorella in mixotrophic conditions with carbon dioxide 
and glucose, which was 58.3% better than photoautotrophic 
cultivation (Figure 1). When comparing the optical densities 
of the two mixotrophic conditions, a 13.7% better develop-
ment of the strain with carbon dioxide and glucose sources 
was observed. Every 24 hours, the optical density of the mix-
otrophic conditions increased in triplicate compared to pho-
toautotrophic.

Maximum dry biomass (1.3 g.l-1) of C.vulgaris was ob-
tained in mixotrophic conditions with carbon dioxide and 
glucose, in comparison to its dry weight in photoautotrophic 
conditions (0.25 g.l-1) (Figure 2). At the end of the experi-
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ment, the biomass in the mixotrophic cultivation with carbon 
dioxide and glucose was 80.8% higher than photoautotrophic. 
This is due to the fact that the energy density of the carbon 
source is higher compared to carbon dioxide and therefore 
the cell masses obtained under the mixotrophic conditions 
are higher (Perez-Garcia et al., 2011).

The difference between biomass is only 15.4% higher in 
the culture with carbon dioxide and glucose under the two 
mixotrophic conditions. These results are confirmed by an-
other authors study, which reported that mixotrophic C. vul-

garis growth in glucose yielded higher biomass content and 
productivity than cells grown under photoautotrophic con-
ditions. Light source and organic carbon source has been 
considered as the most efficient process for the production of 
microalgal biomass (Lee et al., 1996). Reduced light energy 
used for CO2 fixation in mixotrophic cultures leads to energy 
is used for carbon assimilation. Mixotrophy provides higher 
energetic efficiency than other cultivation modes because the 
amount of energy dissipated is minimal (Lalucat et al., 1984). 
According Shi et al. (1999) glucose can be considered the best 
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Fig. 1. Optical density of mixotrophic and photoautotrophic mode of C. vulgaris
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Fig. 2. Effect of photoautotrophic and mixotrophic mode on the dry weight (g.l-1) of C. vulgaris
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organic carbon substrate for the growth of Chlorella. Cultiva-
tion of C. vulgaris with glucose influences metabolic carbon 
assimilation pathways, cells’ size, quantity of storage mate-
rials (starch, lipids, protein) and cellular contents of chloro-
phyll, RNA, vitamins (Perez-Garcia et al., 2011). Therefore 
glucose is one of the most used carbon sources for most liv-
ing cells and is used as a carbon and energy source in many 
heterotrophic cultures of microalgae (Vazhappilly and Chen, 
1998; Jiang and Chen, 2000; Cheng et al., 2009).

The protein content of photoautotrophic and mixotrophic 
microalgal cells were compared in Figure 3.

Cultivation of C. vulgaris using СО2 as carbon source led 
to the highest protein content (26.4%). The highest protein 
content obtained in our study was significantly higher with 
39% than that found in C. vulgaris cultivated in mixotrophic 
with СО2 and lactose, and with 30.7% in CО2 and glucose as 

carbon source. According to some authors, the level of pro-
tein increases in mixotrophic culturing (Abreu et al., 2012). 
Other authors report a higher amount of protein under pho-
totrophic conditions (Orus et al., 1991; Bajwa et al., 2016).

The amount of total pigments (chlorophyll and carote-
noid) in C. vulgaris cultured under photoautotrophic and 
mixotrophic conditions were also determined (Table 1).

As summarized in Table 1, the maximum chlorophyll (a+b) 
pigment content (8.4 g.l-1) was obtained in the photoautotrophic 
culture. In both mixotrophic conditions, the content of chloro-
phyll is twice as low (48.2%) as compared to the phototrophic 
cultivation of the strain, and the differences were statistically 
proven (p≤0.05) (Table 1). These results are confirmed by other 
authors (Kong et al., 2013; Xiong et al., 2010).

The formation of photosynthetic apparatus in Chlorella 
may be disturbed by the presence of organic substrates (Yang 

Table 1 
Effect of photoautotrophic and mixotrophic mode on the photosynthetic pigment content (g.l-1) of C. vulgaris

Growth condition
Chlorophyll (a+b) Carotenoid

24 48 72 96 24 48 72 96
Photoautotrophic    
CO2 1.74±0.09a 3.31±0.15a 6.25±0.07a 8.4±0.14a 0.27±0.02a 0.64±0.05a 1.25±0.07a 2.4±0.14a

Mixotrophic  
CО2+L  

0.51±0.12b 1.36±0.22b 2.26±0.08b 4.35±0.35b 0.11±0.02b 0.27±0.02b 0.5±0.03b 0.7±0.03b

Mixotrophic C 
О2+ G     0.62±0.08b 1.6±0.28b 2.7±0.14b 4.5±0.42 b 0.15±0.02b 0.33±0.03b 0.59±0.01c 0.85±0.06b

*Mean ± standard error in the same column followed by different letters represent significant differences (p ≤ 0.05).
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Fig. 3. Effect of photoautotrophic and mixotrophic mode on the protein content of C. vulgaris
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et al., 2000), resulting in a decreased production of photo-
synthetic pigments when compared with that obtained under 
photoautotrophic conditions. The higher content of chloro-
phylls obtained in the photoautotrophic culture confirms 
such observation when compared to mixotrophic cultures. 
Such observations with enhancement of chlorophyll biosyn-
thesis by photoautotrophic Chlorella strains compared with 
that resulting from mixotrophic cells have been reported by 
other authors (Ip et al., 2004; Kong et al., 2011).

Among the different nutritional modes tested, the highest 
carotenoids content (2.4 g.l-1) was also found in the photo-
autotrophic culture in 96 hours. This value dropped to 70.8 
% when cells were grown in mixotrophic medium supple-
mented with СО2 and lactose and with 64.6% in СО2 and glu-
cose, respectively. These results are consistent with those of 
Liu et al. (2009) who found lower amount of carotenoids in 
mixotrophic cells when compared to cells grown on photoau-
totrophic culture.

Conclusions

In the present study C. vulgaris showed better growth in 
mixotrophic conditions with CO2 and glucose. Higher con-
tent of chlorophylls, carotenoid and protein was obtained in 
the photoautotrophic culture. Mixotrophic cultivation of C. 
vulgaris using glucose and lactose can reduce the costs of 
microalgae biomass production and so contribute to a better 
economic impact and lower energy costs.
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